Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-27T04:50:42.915Z Has data issue: false hasContentIssue false

Alterations of the erythrocyte membrane by in vitro action of Trichinella spiralis muscle larvae

Published online by Cambridge University Press:  29 November 2018

P. Ponce de León
Affiliation:
Fac. Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Argentina
M. Bellini
Affiliation:
Fac. Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Argentina
H. Castellini
Affiliation:
Fac. Cs. Exactas Ingeniería y Agrimensura, UNR, Argentina
B. Riquelme*
Affiliation:
Fac. Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Argentina Grupo de Física Biomédica, IFIR (CONICET-UNR), Rosario, Argentina
*
Author for correspondence: B. Riquelme, E-mail: briquel@fbioyf.unr.edu.ar, riquelme@ifir-conicet.gov.ar

Abstract

The complex life cycle of Trichinella spiralis includes the migration of newborn larvae through the bloodstream to their encystment in muscle. The parasite establishes an intimate contact with the erythrocytes of the host both during the migration of the newborn larvae and when encysting, as this parasite causes intense vascularization in the muscle cell. The goal of this work was to study the effects of various concentrations of T. spiralis muscle larvae (ML) on erythrocyte membranes. The treatment was performed by incubating human erythrocytes with equal volume of different concentrations of ML for 30 minutes, with controlled agitation (37°C). The control erythrocytes (with no contact with the larvae) were incubated in the same way with an equal volume of physiological solution. To evaluate the alterations to the erythrocytes by the action of the larvae and in the respective controls, an Erythrocyte Rheometer and a Digital Image Analysis technique were used. The results indicated that when the larval concentration was higher, the aggregation and erythrocyte membrane alterations were also higher. Also, the erythrocyte deformability index and the erythrocyte elasticity increased. The values of isolated cell coefficient varied from 0.51 in the treatment with 100 larvae/ml to 0.91 in the incubation with 1000 larvae/ml. This experiment shows that T. spiralis muscle larvae affect significantly the red blood cell aggregation and the erythrocyte viscoelastic properties.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albea, B et al. (2013) New instrument for easy determination of rheological parameters of erythrocytes. Biochimica Clinica 37, S437.Google Scholar
Baskurt, OK et al. (2007) Handbook of Hemorheology and Hemodynamics. 1st ed. Amsterdam: IOS Press.Google Scholar
Cabezas Fernández del Campo, JA (2008) Influencia de la sialilación y de la “pegilación” de la molécula de ciertos medicamentos en su actividad. Anales de la Real Academia Nacional de Farmacia 74, 409429.Google Scholar
Colli, W (1993) Trans-sialidase: a unique enzyme activity discovered in the protozoan Trypanosoma cruzi. The FASEB Journal 7, 12571264.Google Scholar
Colli, W et al. (1982) Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature 297, 6466.Google Scholar
Colli, W, Hemphil, A and Ross, CA (1995) Flagellum-mediated adhesion of Trypanosoma congolense to bovine aorta endothelial cells. Parasitology Research 81, 412420.Google Scholar
Devore, J (2013) Probabilidad y estadística para ingeniería y ciencias (7a en.). México: Editorial Latinoamericana.Google Scholar
Foresto, P et al. (2000) Evaluation of red blood cell aggregation in diabetes by computerized image analysis. Medicina 60, 570572.Google Scholar
López Murúa, G, Racca, L and Ponce de León, P (2015) Estudio de la cinética de captación de ácido siálico por larvas musculares de Trichinella spiralis. Acta Bioquímica Clínica Latinoamericana 49, 267272.Google Scholar
Luebke, RW (2007) Nematodes as host resistance models for detection of immunotoxicity. Methods 41, 3847.Google Scholar
Nok, AJ, Nzelibe, HC and Yako, SK (2003) Trypanosoma evansi sialidase: surface localization, properties and hydrolysis of ghost red blood cells and brain cells—implication in Trypanosomiasis. Zeitschrift für Naturforschung C 58, 594601.Google Scholar
Pasqualetti, M et al. (2014) Nuevos aportes al conocimiento de Trichinella y trichinellosis. Revista de Medicina Veterinaria 95(2), 1221.Google Scholar
Ponce de León, P and López Murúa, G (2016) Sialic acid capture by Trichinella spiralis muscle larvae during incubation in vitro. Acta Bioquímica Clínica Latinoamericana 50, 687691.Google Scholar
Ponce de León, P et al. (2011a) Change of erythrocyte charge with the use of Alcian blue method in Ascaris lumbricoides extracts. Revista Cubana de Medicina Tropical 63, 263267.Google Scholar
Ponce de León, P et al. (2011b) Alteration in superficial anionic charge of erythrocytes and desialated erythrocytes caused by Ascaris lumbricoides. Revista Cubana de Medicina Tropical 63, 8790.Google Scholar
Ponce de León, P et al. (2012) Ascaris lumbricoides action on the erythrocyte and desyalated erythrocyte anionic charge. Acta Bioquímica Clínica Latinoamericana 46, 247256.Google Scholar
Ponce de León, P, Del Balzo, G and Riquelme, B (2013a) Biorheological action of Ascaris lumbricoides larvae on human erythrocytes. Cell Biochemistry and Biophysics 65, 237242.Google Scholar
Ponce de León, P et al. (2013b) Efecto biorreológico de larvas de Trichinella spiralis sobre la agregación eritrocitaria mediante Análisis Digital de Imágenes. In Ciencia y Tecnología. Rosario: UNR Editora, p. 268.Google Scholar
Pozio, E and Zarlenga, DS (2005) Recent advances on the taxonomy, systematics and epidemiology of Trichinella. International Journal for Parasitology 35, 11911204.Google Scholar
Rasia, RJ, Porta, P and García Rosasco, M (1986) Shear deformation measurement of suspended particles. Applications to erythrocytes. Review of Scientific Instruments 57, 3335.Google Scholar
Ribicich, M et al. (2005) Trichinellosis in Argentina: an historical review. Veterinary Parasitology 132, 137142.Google Scholar
Riquelme, B, Valverde, J and Rasia, RJ (1998) Complex viscoelasticity of normal and lectin treated erythrocyte using laser diffractometry. Biorheology 35, 325334.Google Scholar
Riquelme, B, Valverde, J and Rasia, RJ (1999) Optical method to determine the complex viscoelasticity parameters of human red blood cells. In Singh, Megha et al. (eds), Medical Diagnostic Techniques and Procedures. New Delhi: Narosa Publishing House, pp. 249255.Google Scholar
Riquelme, B et al. (2006) Study of polycation effects on erythrocyte agglutination mediated by anti-glycophorins using microscopic image digital analysis. In Grzymala, R and Haeberle, O (eds), Biophotonics and New Therapy Frontiers. Bellingham, WA: SPIE.Google Scholar
Souto Padron, T (2002) The surface charge of trypanosomatids. Anais da Academia Brasileira de Ciências 74, 649675.Google Scholar
Valenzuela, MR (1981) Epidemiología de la triquinosis. Ciencia Veterinaria 3, 278334.Google Scholar