Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T15:42:11.724Z Has data issue: false hasContentIssue false

A new species of Dermadena (Digenea: Lepocreadiidae) from the stone triggerfish Pseudobalistes naufragium (Tetraodontiformes: Balistidae) in the South American Pacific Ocean

Published online by Cambridge University Press:  12 May 2022

R.O. Simões
Affiliation:
Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
J.D. Chero
Affiliation:
Departamento de Protozoología, Helmintología e Invertebrados afines, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru Programa de Pós-Graduação em Biologia Animal da Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
C.L. Cruces
Affiliation:
Programa de Pós-Graduação em Biologia Animal da Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
G.M. Sáez
Affiliation:
Laboratorio de Parasitología General y Especializada, Facultad de Ciencias Naturales y Matemática (FCCNM), Universidad Nacional Federico Villarreal (UNFV), Lima, Peru
A. Maldonado Júnior
Affiliation:
Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
J.L. Luque*
Affiliation:
Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
*
Author for correspondence: J.L. Luque, E-mail: luqueufrrj@gmail.com

Abstract

The present paper describes a new species of Dermadena (Digenea) parasitizing Pseudobalistes naufragium in Puerto Pizarro, northern Peru, using light and scanning electronic microscopy (SEM). Additionally, molecular analysis was also performed to determine the phylogenetic affinities of Dermadena within the Lepocreadiidae. The new species is differentiated from Dermadena spatiosa, Dermadena stirlingi and Dermadena lactophrysi by presenting a curved and well-developed external seminal vesicle. Also, SEM revealed numerous dome-shaped tegument protuberances forming glandular papillae with transversal wrinkles arranged roughly in concentric rows around the acetabular region, varying in size from large at the middle of the body to small at the margin. In the molecular phylogeny, the new species formed a well-supported clade with sequences of species from the Lepocreadiidae, confirming that it belongs to this family.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anisimova, M and Gascuel, O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Systematic Biology 55(4), 539552.CrossRefGoogle ScholarPubMed
Bray, RA (2005) Superfamily Lepocreadioidea Odhner, 1905, pp. 541–544. In Jones, A, RA, Bray, DI, Gibson (Eds) Keys to the Trematoda, Vol. 2. London, UK, CABI Publishing and The Natural History Museum.Google Scholar
Bray, RA and Cribb, TH (1996) The Australian species of Lobatocreadium Madhavi, 1972, Hypocreadium Ozaki, 1936 and Dermadena Manter, 1945 (Digenea: Lepocreadiidae), parasites of marine tetraodontiform fishes. Systematic Parasitology 35(3), 217236.CrossRefGoogle Scholar
Bray, RA and Cribb, TH (2012) Reorganisation of the superfamily Lepocreadioidea Odhner, 1905 based on an inferred molecular phylogeny. Systematic Parasitology 83(3), 169177.CrossRefGoogle Scholar
Bray, RA, Waeschenbach, A, Cribb, TH, Weedal, GD, Dyal, P and Littlewood, DTJ (2009) The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: implications for their systematics and evolution. Acta Parasitologica 54(4), 310329.CrossRefGoogle Scholar
Bussing, WA (1995) Balistidae. Pejepuercos, calafates, gatillos. pp. 905909. In Fischer W, W, Krupp, F, Schneider, W, Sommer, C, Carpenter, KE, Niem, V (Eds) Guia FAO para Identificación de especies para los fines de la Pesca. Pacifico Centro-Oriental, Vol 3. Rome, FAO.Google Scholar
Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W and Gascuel, O (2010) New algorithms and methods to estimate maximum likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3), 307321.CrossRefGoogle ScholarPubMed
Humann, P and Deloach, N (1993) Reef fish identification. Galápagos. 267 p. Florida, New World Publications, Inc.Google Scholar
Jones, A, Bray, R and Gibson, DI (2005) Keys to the Trematoda, Vol. 2. 1st ed. p. 768. London, CABI Publishing and the Natural History Museum.CrossRefGoogle Scholar
Kearse, M, Moir, R, Wilson, A, et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 16471649.CrossRefGoogle ScholarPubMed
Lefort, V, Longueville, JE and Gascuel, O (2017) SMS: Smart Model Selection in PhyML. Molecular Biology and Evolution 34(9), 24222424.CrossRefGoogle ScholarPubMed
Machida, M and Kuramochi, T (1999) Digenean trematodes from tetraodontiform fishes from Japanese and adjacent waters. Bulletin of the National Science Museum, Tokyo. Series A. Zoology 25(1), 125.Google Scholar
Manter, HW (1945) Dermadena lactophrysi n. gen., n. sp. (Trematoda: Lepocreadiidae) and consideration of the related genus Pseudocreadium. Journal of Parasitology 31(6), 411417.CrossRefGoogle Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. pp. 1–8. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA.CrossRefGoogle Scholar
Nahhas, FM and Cable, RM (1964) Digenetic and aspidogastrid trematodes from marine fishes of Curaçao and Jamaica. Tulane Studies in Zoology 11(4), 169228.CrossRefGoogle Scholar
Nahhas, FM and Carlson, K (1994) Digenetic trematodes of marine fishes of Jamaica, West Indies. Publications of the Hofstra University Marine Laboratory, Ecological Survey of Jamaica 2, 160.Google Scholar
Nahhas, FM and Short, RB (1965) Digenetic trematodes of marine fishes from Apalachee Bay, Gulf of Mexico. Tulane Studies in Zoology 12(1), 3950.Google Scholar
Overstreet, RM (1969) Digenetic trematodes of marine teleost fishes from Biscayne Bay, Florida. Tulane Studies in Zoology and Botany 15(4), 119176.Google Scholar
Pequeño, G (1989) Peces de Chile. Lista sistemática revisada y comentada [Chile fish. Systematic list reviewed and annotated]. Revista de Biología Marina y Oceanografía 24(2), 1132. [In Spanish.]Google Scholar
Ronquist, F, Teslenko, M, van der Mark, P, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3), 539542.CrossRefGoogle ScholarPubMed
Siddiqi, AH and Cable, RM (1960) Digenetic trematodes of marine fishes of Puerto Rico. Scientific Survey of Porto Rico and the Virgin Islands 17(3), 257369.Google Scholar
Sogandares-Bernal, F (1959) Digenetic trematodes of marine fishes from the Gulf of Panama and Bimini, British West Indies. Tulane Studies in Zoology 7(3), 69117.Google Scholar
Sun, D, Bray, RA, Yong, RQ-Y, Cutmore, SC and Cribb, TH (2014) Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia. Systematic Parasitology 88(2), 141152.CrossRefGoogle Scholar