Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T01:42:56.110Z Has data issue: false hasContentIssue false

Weakly nonlinear analysis of viscous dissipation thermal instability in plane Poiseuille and plane Couette flows

Published online by Cambridge University Press:  16 January 2020

Y. Requilé
Affiliation:
Unité de Mécanique de Lille, EA 7512, Université de Lille, Bd. Paul Langevin, 59655Villeneuve d’Ascq CEDEX, France
S. C. Hirata
Affiliation:
Unité de Mécanique de Lille, EA 7512, Université de Lille, Bd. Paul Langevin, 59655Villeneuve d’Ascq CEDEX, France
M. N. Ouarzazi*
Affiliation:
Unité de Mécanique de Lille, EA 7512, Université de Lille, Bd. Paul Langevin, 59655Villeneuve d’Ascq CEDEX, France
A. Barletta
Affiliation:
Department of Industrial Engineering, Alma Mater Studiorum Università di Bologna, Viale Risorgimento 2, Bologna40136, Italy
*
Email address for correspondence: mohamed-najib.ouarzazi@univ-lille.fr

Abstract

The weakly nonlinear stability analysis of plane Poiseuille flow (PPF) and plane Couette flow (PCF) when viscous dissipation is taken into account is considered. The impermeable lower boundary is considered adiabatic, while the impermeable upper boundary is isothermal. The linear stability of this problem has been performed by Barletta and Nield (J. Fluid Mech., vol. 662, 2010, pp. 475–492) for PCF and by Barletta et al. (J. Fluid Mech., vol. 681, 2011, pp. 499–514) for PPF. These authors found that longitudinal rolls are the preferred mode of convection and the onset of instability is described through the governing parameters $\unicode[STIX]{x1D6EC}=Ge\;Pe^{2}$ and $Pr$, where $Ge$, $Pe$ and $Pr$ are respectively the Gebhart number, the Péclet number and the Prandtl number. The current study focuses on the near-threshold behaviour of longitudinal rolls by using a weakly nonlinear analysis. We determine numerically up to third order the coefficients of the Landau amplitude equation and investigate in detail the influences on bifurcation characteristics of the different nonlinearities present in the system. The results indicate that for both PPF and PCF configurations (i) the inertial terms have no influence on the nonlinear evolution of the disturbance amplitude (ii) the nonlinear thermal advection terms act in favour of pitchfork supercritical bifurcations and (iii) the nonlinearities associated with viscous dissipation promote subcritical bifurcations. The global impact of the different nonlinear contributions indicate that, independently of the Gebhart number, the bifurcation is subcritical if $Pr<0.25$ ($Pr<0.77$) for PPF (PCF). Otherwise, for higher Prandtl number, there exists a particular value of Gebhart number, $Ge^{\ast }$ such that the bifurcation is supercritical (subcritical) if $Ge<Ge^{\ast }$ ($Ge>Ge^{\ast }$). Finally, for both PPF and PCF, the amplitude analysis indicates that, in the supercritical bifurcation regime, the equilibrium amplitude decreases on increasing $Pr$ and a substantial enhancement (reduction) in heat transfer rate is found for small $Pr$ (moderate or large $Pr$).

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de B. Alves, L. S., Hirata, S. C. & Ouarzazi, M. N. 2016 Linear onset of convective instability for Rayleigh–Bénard–Couette flows of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 231, 7990.CrossRefGoogle Scholar
Barletta, A. 2015 On the thermal instability induced by viscous dissipation. Intl J. Therm. Sci. 88, 238247.CrossRefGoogle Scholar
Barletta, A., Celli, M. & Nield, D. A. 2011 On the onset of dissipation thermal instability for the Poiseuille flow of a highly viscous fluid in a horizontal channel. J. Fluid Mech. 681, 499514.CrossRefGoogle Scholar
Barletta, A. & Nield, D. A. 2010 Convection-dissipation instability in the horizontal plane Couette flow of a highly viscous fluid. J. Fluid Mech. 662, 475492.CrossRefGoogle Scholar
Biau, D. & Bottaro, A. 2004 The effect of stable thermal stratification on shear flow instability. Phys. Fluids 16, 47424745.CrossRefGoogle Scholar
Carrière, P. & Monkewitz, P. A. 1999 Convective versus absolute instability in mixed Rayleigh–Bénard–Poiseuille convection. J. Fluid Mech. 384, 243262.CrossRefGoogle Scholar
Dauchot, O. & Daviaud, F. 1995 Finite amplitude perturbation and spots growth mechanism in plane Couette flow. J. Fluid Mech. 7, 335343.Google Scholar
Generalis, S. C. & Fujimura, K. 2009 Range of validity of weakly nonlinear theory in the Rayleigh–Bénard problem. J. Phys. Soc. Japan 78, 8-084401.Google Scholar
Hirata, S. C., de B. Alves, L. S., Delenda, N. & Ouarzazi, M. N. 2015 Convective and absolute instabilities in Rayleigh–Bénard–Poiseuille mixed convection for viscoelastic fluids. J. Fluid Mech. 765, 167210.CrossRefGoogle Scholar
Hu, J., Ben Hadid, H. & Henry, D. 2007 Linear stability analysis of Poiseuille–Rayleigh–Bénard flows in binary fluids with soret effect. Phys. Fluids 19, 034101.CrossRefGoogle Scholar
Jerome, J. J. S., Chomaz, J.-M. & Huerre, P. 2012 Transient growth in Rayleigh–Bénard–Poiseuille/Couette convection. Phys. Fluids 24, 044103.Google Scholar
Martinand, D., Carrière, P. & Monkewitz, P. A. 2006 Three-dimensional global instability modes associated with a localized hot spot in Rayleigh–Bénard–Poiseuille convection. J. Fluid Mech. 551, 275301.CrossRefGoogle Scholar
Métivier, C., Nouar, C. & Brancher, J.-P. 2010 Weakly nonlinear dynamics of thermoconvective instability involving viscoplastic fluids. J. Fluid Mech. 660, 316353.CrossRefGoogle Scholar
Nicolas, X. 2002 Bibliographical review on the Poiseuille–Rayleigh–Bénard flows: the mixed convection flows in horizontal rectangular ducts heated from below. Intl J. Therm. Sci. 41 (10), 9611016.CrossRefGoogle Scholar
Nishioka, M. & Asai, M. 1985 Some observations of the subcritical transition in plane Poiseuille flow. J. Fluid Mech. 150, 441450.CrossRefGoogle Scholar
Nishioka, M., Iida, A. S. & Ichikawa, Y. 1975 An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731751.CrossRefGoogle Scholar
Orszag, S. A. 1971 Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689703.CrossRefGoogle Scholar
Orszag, S. A. & Patera, A. T. 1980 Subcritical transition to turbulence in plane channel flows. Phys. Rev. Lett. 45, 989993.CrossRefGoogle Scholar
Ouarzazi, M. N., Hirata, S. C., Barletta, A. & Celli, M. 2017 Finite amplitude convection and heat transfer in inclined porous layer using a thermal non-equilibrium model. Intl J. Heat Mass Transfer 113, 399410.CrossRefGoogle Scholar
Ouarzazi, M. N., Mejni, F., Delache, A. & Labrosse, G. 2008 Nonlinear global modes in inhomogeneous mixed convection flows in porous media. J. Fluid Mech. 595, 367377.CrossRefGoogle Scholar
Romanov, V. 1973 Stability of plane-parallel Couette flow. Funct. Anal. Appl. 7, 137146.CrossRefGoogle Scholar
Tillmarki, N. & Alfredsson, P. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.CrossRefGoogle Scholar