Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T03:34:34.463Z Has data issue: false hasContentIssue false

Velocity fluctuations generated by the flow through a random array of spheres: a model of bubble-induced agitation

Published online by Cambridge University Press:  22 June 2017

Zouhir Amoura
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France Fédération de recherche FERMaT, CNRS, Toulouse, France
Cédric Besnaci
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France Fédération de recherche FERMaT, CNRS, Toulouse, France
Frédéric Risso*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France Fédération de recherche FERMaT, CNRS, Toulouse, France
Véronique Roig*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France Fédération de recherche FERMaT, CNRS, Toulouse, France
*
Email addresses for correspondence: frisso@imft.fr, roig@imft.fr
Email addresses for correspondence: frisso@imft.fr, roig@imft.fr

Abstract

This work reports an experimental investigation of the flow through a random array of fixed solid spheres. The volume fraction of the spheres is 2 %, and the Reynolds number $Re$ based on the sphere diameter and the average flow velocity is varied from 120 to 1040. Using time and spatial averaging, the fluctuations have been decomposed into two contributions of different natures: a spatial fluctuation that accounts for the strong inhomogeneity of the flow around each sphere, and a time fluctuation that comes from the instability of the flow at large enough Reynolds numbers. The evolutions of these two contributions with the Reynolds number are different, so that their relative importance varies. However, when each is normalized by using its own variance and the integral length scales of the fluctuations, their spectra and probability density functions (PDFs) are almost independent of $Re$ . The spatial fluctuation mostly comes from the velocity deficit in the wakes of the spheres, and is thus dominated by scales larger than one or two sphere diameters. It is found to be responsible for the asymmetry of the PDFs of the vertical fluctuations and of the major part of the anisotropy level between the vertical and the horizontal components of the fluctuations. The time fluctuation dominates at scales smaller than the integral length scale. It is isotropic and its PDFs, well described by an exponential distribution, are non-Gaussian. The spectra of the spatial and the time fluctuations both show an evolution as the power $-3$ of the wavenumber, but not exactly in the same subrange. All these properties are found in remarkable agreement with the results of both experimental investigations and large eddy simulations (LES) of a homogeneous bubble swarm. This confirms that the main mechanism responsible for the production of bubble-induced fluctuations is the interaction of the velocity disturbances caused by obstacles immersed in a flow and that the structure of this agitation is weakly dependent on the precise nature of the obstacles. The understanding and the modelling of the agitation generated by the motion of a dispersed phase, such as the bubble-induced agitation, therefore require one to distinguish between the roles of these two contributions.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoura, Z.2008 Etude hydrodynamique de l’écoulement traversant un réseau aléatoire de sphères fixes. PhD thesis, Université de Toulouse.Google Scholar
Amoura, Z., Roig, V., Risso, F. & Billet, A.-M. 2010 Attenuation of the wake of a sphere in an intense incident turbulence with large length scales. Phys. Fluids 22, 055105.CrossRefGoogle Scholar
Besnaci, C.2012 Mélange induit par un écoulement au travers un réseau aléatoire d’obstacles. PhD thesis, Université de Toulouse.Google Scholar
Bouche, E., Roig, V., Risso, F. & Billet, A.-M. 2012 Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 1. Bubble dynamics. J. Fluid Mech. 704, 211231.CrossRefGoogle Scholar
Bouche, E., Roig, V., Risso, F. & Billet, A.-M. 2014 Homogeneous swarm of high-Reynolds-number bubbles rising within a thin gap. Part 2. Liquid dynamics. J. Fluid Mech. 758, 508521.CrossRefGoogle Scholar
Cartellier, A. & Rivière, R. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13, 21652181.Google Scholar
Climent, E. & Magnaudet, J. 1999 Large-scale simulations of bubble-induced convection in a liquid layer. Phys. Rev. Lett. 82 (24), 48274830.CrossRefGoogle Scholar
Colombet, D., Legendre, D., Risso, F., Cockx, A. & Guiraud, P. 2015 Dynamics and mass transfer of rising bubbles in a homogenous swarm at large gas volume fraction. J. Fluid Mech. 763, 254285.CrossRefGoogle Scholar
Fornari, W., Picano, F. & Brandt, L. 2016a Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.Google Scholar
Fornari, W., Picano, F., Sardina, G. & Brandt, L. 2016b Reduced particle settling speed in turbulence. J. Fluid Mech. 808, 153167.Google Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.Google Scholar
Larue de Tournemine, A. & Roig, V. 2010 Self-excited oscillations in buoyant confined bubbly mixing layers. Phys. Fluids 22, 023301.Google Scholar
Martinez-Mercado, J., Chehata Gómez, D., Van Gils, D., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.CrossRefGoogle Scholar
Martinez-Mercado, J., Palacios-Morales, C. & Zenit, R. 2007 Measurement of pseudo-turbulence intensity in mono-dispersed bubbly liquids for 10 < Re < 500. Phys. Fluids 19, 103302.CrossRefGoogle Scholar
Mendez-Diaz, S., Serrano-García, J. C., Zenit, R. & Hernández-Cordero, J. A. 2013 Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25 (4), 043303.CrossRefGoogle Scholar
Mudde, R. F. 2005 Gravity-driven bubbly flows. Annu. Rev. Fluid Mech. 37 (1), 393423.CrossRefGoogle Scholar
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1), 123142.CrossRefGoogle Scholar
Parzen, E. 1962 On estimation of a probability density function and mode. Ann. Math. Statist. 33 (3), 10651076.CrossRefGoogle Scholar
Prakash, V. N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.CrossRefGoogle Scholar
Riboux, G., Legendre, D. & Risso, F. 2013 A model of bubble-induced turbulence based on large-scale wake interactions. J. Fluid Mech. 719, 362387.CrossRefGoogle Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.Google Scholar
Risso, F. 2011 Theoretical model for k -3 spectra in dispersed multiphase flows. Phys. Fluids 23 (1), 011701.Google Scholar
Risso, F. & Ellingsen, K. 2002 Velocity fluctuations in homogeneous dilute dispersion of high-Reynolds-number rising bubbles. J. Fluid Mech. 453, 395410.Google Scholar
Risso, F., Roig, V., Amoura, Z., Riboux, G. & Billet, A.-M. 2008 Wake attenuation in large Reynolds number dispersed two-phase flows. Phil. Trans. R. Soc. Lond. A 366, 21772190.Google Scholar
Roig, V. & Larue de Tournemine, A. 2007 Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction. J. Fluid Mech. 572, 87110.Google Scholar
Schiller, L. & Naumann, A. Z. 1933 Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
White, B. L. & Nepf, H. M. 2003 Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 4379.Google Scholar
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar