Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T06:10:47.081Z Has data issue: false hasContentIssue false

Universal modulations of large-scale motions on entrainment of turbulent boundary layers

Published online by Cambridge University Press:  11 May 2022

Yanguang Long
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Jinjun Wang*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Chong Pan
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: jjwang@buaa.edu.cn

Abstract

The modulations of high/low-speed large-scale motions (H/L-SMs) on the turbulent/non-turbulent interface (TNTI) and turbulent entrainment are investigated in turbulent boundary layers via both experimental and numerical studies. The spanwise locations of large-scale motions can be locked by the spanwise heterogeneity, so the boundary layers over such a configuration are investigated first as an instructive case. In the engulfment process, it is found that irrotational ‘bubbles’ near the TNTI are more likely to originate from engulfment, while bubbles far from the TNTI could be produced by the local turbulence itself. Additionally, H-SMs are found to enhance the engulfment by the sweep flow. In the nibbling process, a competition relationship is observed: L-SMs induce stronger instantaneous ‘nibbling’ events by transporting more fluids towards the TNTI, while the H-SMs induced a more distorted TNTI. Consequently, the integral nibbling flux is greater above H-SMs. Furthermore, the explored mechanisms are verified to be insensitive to the wall shapes such as smooth and homogeneous roughness walls, which demonstrates that these modulations are universal for turbulent boundary layers. Finally, a conceptual modulation model is proposed to illustrate the entrainment process above the large-scale motions.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Balamurugan, G., Rodda, A., Philip, J. & Mandal, A.C. 2020 Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer. J. Fluid Mech. 894, A4.CrossRefGoogle Scholar
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.CrossRefGoogle Scholar
Borrell, G., Sillero, J.A. & Jiménez, J. 2013 A code for direct numerical simulation of turbulent boundary layers at high Reynolds numbers in bg/p supercomputers. Comput. Fluids 80, 3743.CrossRefGoogle Scholar
Breda, M. & Buxton, O.R.H. 2019 Behaviour of small-scale turbulence in the turbulent/non-turbulent interface region of developing turbulent jets. J. Fluid Mech. 879, 187216.CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.CrossRefGoogle Scholar
Cafiero, G. & Vassilicos, J.C. 2020 Non-equilibrium scaling of the turbulent-nonturbulent interface speed in planar jets. Phys. Rev. Lett. 125 (17), 174501.CrossRefGoogle Scholar
Cimarelli, A. & Boga, G. 2021 Numerical experiments on turbulent entrainment and mixing of scalars. J. Fluid Mech. 927, A34.CrossRefGoogle Scholar
Dahm, W.J.A. & Dimotakis, P.E. 1987 Measurements of entrainment and mixing in turbulent jets. AIAA J. 25 (9), 12161223.CrossRefGoogle Scholar
De Graaff, D.B. & Eaton, J.K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.CrossRefGoogle Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.CrossRefGoogle Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.CrossRefGoogle ScholarPubMed
Holzner, M., Lüthi, B., Tsinober, A. & Kinzelbach, W. 2009 Acceleration, pressure and related quantities in the proximity of the turbulent/non-turbulent interface. J. Fluid Mech. 639, 153165.CrossRefGoogle Scholar
Jahanbakhshi, R. 2021 Mechanisms of entrainment in a turbulent boundary layer. Phys. Fluids 33 (3), 035105.CrossRefGoogle Scholar
Jahanbakhshi, R. & Madnia, C.K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Jiménez, J., Hoyas, S., Simens, M.P. & Mizuno, Y. 2010 Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.CrossRefGoogle Scholar
Kankanwadi, K.S & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.CrossRefGoogle Scholar
Kevin, K., Monty, J.P., Bai, H.L., Pathikonda, G., Nugroho, B., Barros, J.M., Christensen, K.T. & Hutchins, N. 2017 Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J. Fluid Mech. 813, 412435.CrossRefGoogle Scholar
Kwon, Y.S., Hutchins, N. & Monty, J.P. 2016 On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J. Fluid Mech. 794, 516.CrossRefGoogle Scholar
Lee, J., Sung, H.J. & Zaki, T.A. 2017 Signature of large-scale motions on turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 819, 165187.CrossRefGoogle Scholar
Long, Y., Wu, D. & Wang, J. 2021 A novel and robust method for the turbulent/non-turbulent interface detection. Exp. Fluids 62 (138), 111.CrossRefGoogle Scholar
Marco, Z. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.Google Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.CrossRefGoogle ScholarPubMed
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2018 Characteristics of turbulent boundary layers over smooth surfaces with spanwise heterogeneities. J. Fluid Mech. 838, 516543.CrossRefGoogle Scholar
Medjnoun, T., Vanderwel, C. & Ganapathisubramani, B. 2020 Effects of heterogeneous surface geometry on secondary flows in turbulent boundary layers. J. Fluid Mech. 886, 136.CrossRefGoogle Scholar
Mellado, J.P. 2017 Cloud-top entrainment in stratocumulus clouds. Annu. Rev. Fluid Mech. 49, 145169.CrossRefGoogle Scholar
Mistry, D., Dawson, J.R. & Kerstein, A.R. 2018 The multi-scale geometry of the near field in an axisymmetric jet. J. Fluid Mech. 838, 501515.CrossRefGoogle Scholar
Mistry, D., Philip, J. & Dawson, J.R. 2019 Kinematics of local entrainment and detrainment in a turbulent jet. J. Fluid Mech. 871, 896924.CrossRefGoogle Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.CrossRefGoogle Scholar
Neamtu-Halic, M.M., Krug, D., Haller, G. & Holzner, M. 2019 Lagrangian coherent structures and entrainment near the turbulent/non-turbulent interface of a gravity current. J. Fluid Mech. 877, 824843.CrossRefGoogle Scholar
Neamtu-Halic, M.M., Krug, D., Mollicone, J.-P., Van Reeuwijk, M., Haller, G. & Holzner, M. 2020 Connecting the time evolution of the turbulence interface to coherent structures. J. Fluid Mech. 898, A3.CrossRefGoogle Scholar
Österlund, J.M., Johansson, A.V., Nagib, H.M. & Hites, M.H. 2000 A note on the overlap region in turbulent boundary layers. Phys. Fluids 12 (1), 14.CrossRefGoogle Scholar
Pan, C., Xue, D., Xu, Y., Wang, J.J. & Wei, R.J. 2015 Evaluating the accuracy performance of Lucas–Kanade algorithm in the circumstance of PIV application. Sci. China Phys. Mech. 58 (10), 116.CrossRefGoogle Scholar
Philip, J., Meneveau, C., de Silva, C.M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.CrossRefGoogle Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.CrossRefGoogle Scholar
van Reeuwijk, M., Vassilicos, J.C. & Craske, J. 2021 Unified description of turbulent entrainment. J. Fluid Mech. 908, A12.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $\delta ^+ \approx$ 2000. Phys. Fluids 25 (10), 105102.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $\delta ^+ \approx$ 2000. Phys. Fluids 26 (10), 105109.CrossRefGoogle Scholar
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 a Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.CrossRefGoogle Scholar
da Silva, C.B., Taveira, R.R. & Borrell, G. 2014 b Characteristics of the turbulent/nonturbulent interface in boundary layers, jets and shear-free turbulence. J. Phys.: Conf. Ser. 506 (1), 012015.Google Scholar
de Silva, C.M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.CrossRefGoogle ScholarPubMed
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.CrossRefGoogle Scholar
Simens, M.P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.CrossRefGoogle Scholar
Soloff, S.M., Adrian, R.J. & Liu, Z.-C. 1997 Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8 (12), 14411454.CrossRefGoogle Scholar
Turner, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.CrossRefGoogle Scholar
Van Doorne, C.W.H. & Westerweel, J. 2007 Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp. Fluids 42 (2), 259279.CrossRefGoogle Scholar
Wang, W., Pan, C. & Wang, J. 2021 Energy transfer structures associated with large-scale motions in a turbulent boundary layer. J. Fluid Mech. 906, A14.CrossRefGoogle Scholar
Wangsawijaya, D.D., Baidya, R., Chung, D., Marusic, I. & Hutchins, N. 2020 The effect of spanwise wavelength of surface heterogeneity on turbulent secondary flows. J. Fluid Mech. 894, A7.CrossRefGoogle Scholar
Watanabe, T., Jaulino, R., Taveira, R.R., da Silva, C.B., Nagata, K. & Sakai, Y. 2017 Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys. Rev. Fluids 2 (9), 094607.CrossRefGoogle Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet. J. Fluid Mech. 758, 754785.CrossRefGoogle Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2020 Scale-by-scale kinetic energy budget near the turbulent/nonturbulent interface. Phys. Rev. Fluids 5 (12), 124610.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
Wieneke, B. 2005 Stereo-PIV using self-calibration on particle images. Exp. Fluids 39 (2), 267280.CrossRefGoogle Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.CrossRefGoogle Scholar
Wu, D., Wang, J., Cui, G. & Pan, C. 2020 Effects of surface shapes on properties of turbulent/non-turbulent interface in turbulent boundary layers. Sci. China Technol. Sci. 63 (2), 214222.CrossRefGoogle Scholar
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.CrossRefGoogle Scholar
Zimmerman, S., et al. 2019 A comparative study of the velocity and vorticity structure in pipes and boundary layers at friction Reynolds numbers up to $10^{4}$. J. Fluid Mech. 869, 182213.CrossRefGoogle Scholar