Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T10:38:06.920Z Has data issue: false hasContentIssue false

Turbulent Rayleigh–Bénard convection for a Prandtl number of 0.67

Published online by Cambridge University Press:  23 November 2009

GUENTER AHLERS*
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
EBERHARD BODENSCHATZ
Affiliation:
Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Goettingen, Germany
DENIS FUNFSCHILLING
Affiliation:
LSGC CNRS–GROUPE ENSIC, BP 451, 54001 Nancy Cedex, France
JAMES HOGG
Affiliation:
Department of Physics, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: guenter@physics.ucsb.edu

Abstract

For the Rayleigh-number range 107Ra ≲ 1011 we report measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for cylindrical samples of helium gas (Prandtl number Pr = 0.674) that have aspect ratio Γ ≡ D/L = 0.50 (D and L are the diameter and the height respectively) and are heated from below. The results for Nu are consistent with recent direct numerical simulations. We measured the amplitude δ of the azimuthal temperature variation induced by the LSC at the sidewall, and the LSC circulation-plane orientation θ0, at three vertical positions. For the entire Ra range the LSC involves a convection roll that is coherent over the height of the system. However, this structure frequently collapses completely at irregular time intervals and then reorganizes from the incoherent flow. At small δ the probability distribution p(δ) increases linearly from zero; for Γ = 1 and Pr = 4.38 this increase is exponential. No evidence of a two-roll structure, with one above the other, was observed. This differs from recent direct numerical simulations for Γ = 0.5 and Pr = 0.7, where a one-roll LSC was found to exist only for Ra ≲ 109 to 1010, and from measurements for Γ = 0.5 and Pr ≃ 5, where one- and two-roll structures were observed with transitions between them at random time intervals.

JFM classification

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G. 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.CrossRefGoogle ScholarPubMed
Ahlers, G., Brown, E. & Nikolaenko, A. 2006 The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 a Effect of the Earth's Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108-1–125108-15.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001-1–14001-6.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101-1–075101-16.Google Scholar
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2005 a Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 b Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 c Heat transport by turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivity. Phys. Fluids 17, 075108-1–075108-10.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Chabaud, B., Castaing, B. & Hebral, B. 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.CrossRefGoogle Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech 607, 119139.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large scale flow generation in turbulent convection. Proc. Natl Acad. Sci. 78, 19811985.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. (in press).Google Scholar
Malkus, M. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. London A 225, 196212.Google Scholar
Niemela, J. J., Skrebek, L., Sreenivasan, K. R. & Donnelly, R. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Niemela, J. J. & Sreenivasan, K. R. 2006 The use of cryogenic helium for classical turbulence: promises and hurdles. J. Low Temp. Phys. 143, 163212.CrossRefGoogle Scholar
Roche, P., Castaing, B., Chabaud, B., Hebral, B. & Sommeria, J. 2001 sidewall effects in Rayleigh–Bénard experiments. Eur. Phys. J. 24, 405408.CrossRefGoogle Scholar
Stevens, R. J. A. M., Verzicco, R. & Lohse, D. 2009 Radial boundary-layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. (in press), ArXiv: 0905.0379.Google Scholar
Stringano, G. & Verzicco, R. 2006 Mean flow structure in thermal convection in a cylindrical cell of aspect-ratio one half. J. Fluid Mech. 548, 116.CrossRefGoogle Scholar
Sun, C., Xi, H. D. & Xia, K. Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Verzicco, R. 2004 Effect of non-perfect thermal sources in turbulent thermal convection. Phys. Fluids 16, 19651979.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307-1–066307-5.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 a Azimuthal motion, reorientation, cessation, and reversals of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78, 036326-1–036326-11.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 b Flow mode transition in turbulent thermal convection. Phys. Fluids 20, 055104-1–055104-15.CrossRefGoogle Scholar
Zhong, J.-Q., Stevens, R., Clercx, H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502-1–044502-4.Google ScholarPubMed
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.CrossRefGoogle Scholar