Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T00:00:09.898Z Has data issue: false hasContentIssue false

Three-dimensional quasi-geostrophic convection in the rotating cylindrical annulus with steeply sloping endwalls

Published online by Cambridge University Press:  04 September 2013

Michael A. Calkins
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Keith Julien*
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Philippe Marti
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
*
Email address for correspondence: julien@colorado.edu

Abstract

The rotating cylindrical annulus geometry was first developed by Busse (J. Fluid Mech., vol. 44, 1970, pp. 441–460) as a simplified analogue for studying convection in rapidly rotating spherical geometries. Although it has provided a more tractable two-dimensional model than the sphere, it is formally limited to asymptotically small slopes and thus weak velocities in the direction parallel to the rotation axis. We present an asymptotically reduced three-dimensional equation set to model quasi-geostrophic convection in the annulus geometry where order-one slopes are permissible; this model provides a closer analogue to quasi-geostrophic convection in spheres and spherical shells where steeply sloping boundaries are present. A linear stability analysis of the reduced equations shows that a new class of three-dimensional, convectively driven Rossby waves is present in this system. The gravest modes exhibit strong axial variations as the slope of the boundaries becomes large. In addition, higher-order eigenmodes showing increasingly complex axial dependence are found that possess critical Rayleigh numbers close to that of the gravest mode.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anufriev, A. P., Jones, C. A. & Soward, A. M. 2005 The Boussinesq and anelastic liquid approximations for convection in the Earth’s core. Phys. Earth Planet. Inter. 152, 163190.CrossRefGoogle Scholar
Aubert, J., Brito, D., Nataf, H.-C., Cardin, P. & Masson, J.-P. 2001 A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium. Phys. Earth Planet. Inter. 128, 5174.Google Scholar
Aubert, J., Gillet, N. & Cardin, P. 2003 Quasigeostrophic models of convection in rotating spherical shells. Geochem. Geophys. Geosyst. 4 (7), 1052.Google Scholar
Aurnou, J. M. 2007 Planetary core dynamics and convective heat transfer scaling. Geophys. Astrophys. Fluid Dyn. 101 (5–6), 327345.Google Scholar
Azouni, M. A., Bolton, E. W. & Busse, F. H. 1986 Convection driven by centrifugal buoyancy in a rotating annulus. Geophys. Astrophys. Fluid Dyn. 34, 301317.Google Scholar
Bannon, P. R. 1996 On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci. 53 (23), 36183628.Google Scholar
Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441460.Google Scholar
Busse, F. H. 1986 Asymptotic theory of convection in a rotating, cylindrical annulus. J. Fluid Mech. 173, 545556.Google Scholar
Busse, F. H. & Carrigan, C. R. 1974 Convection induced by centrifugal buoyancy. J. Fluid Mech. 62, 579592.CrossRefGoogle Scholar
Busse, F. H. & Carrigan, C. R. 1976 Laboratory simulation of thermal convection in rotating planets and stars. Science 191 (4222), 8183.Google Scholar
Calkins, M. A., Aurnou, J. M., Eldredge, J. D. & Julien, K. 2012a The influence of fluid properties on the morphology of core turbulence and the geomagnetic field. Earth Planet. Sci. Lett. 359–360, 5560.CrossRefGoogle Scholar
Calkins, M. A., Noir, J., Eldredge, J. D. & Aurnou, J. M. 2010 Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry. Phys. Fluids 22, 086602.Google Scholar
Calkins, M. A., Noir, J., Eldredge, J. D. & Aurnou, J. M. 2012b The effects of boundary topography on convection in Earth’s core. Geophys. J. Intl 189, 799814.CrossRefGoogle Scholar
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235239.Google Scholar
Charney, J. G. 1948 On the scale of atmospheric motions. Geophys. Publ. 17, 317.Google Scholar
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.Google Scholar
Cordero, S. 1993 Experiments on convection in a rotating hemispherical shell: transition to chaos. Geophys. Res. Lett. 20 (23), 25872590.Google Scholar
Cordero, S. & Busse, F. H. 1992 Experiments on convection in rotating hemispherical shells: transition to a quasi-periodic state. Geophys. Res. Lett. 19 (8), 733736.Google Scholar
Dawes, J. H. P. 2001 Rapidly rotating thermal convection at low Prandtl number. J. Fluid Mech. 428, 6180.Google Scholar
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004 The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 4370.CrossRefGoogle Scholar
Embid, P. F. & Majda, A. J. 1998 Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers. Geophys. Astrophys. Fluid Dyn. 87, 150.Google Scholar
Garcia, F., Sánchez, J. & Net, M. 2008 Antisymmetric polar modes of thermal convection in rotating spherical fluid shells at high Taylor numbers. Phys. Rev. Lett. 101, 194501.Google Scholar
Gillet, N., Brito, D., Jault, D. & Nataf, H.-C. 2007 Experimental and numerical studies of convection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 83121.Google Scholar
Gillet, N. & Jones, C. A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343369.Google Scholar
Glatzmaier, G. A. 2002 Geodynamo simulations – how realistic are they? Annu. Rev. Earth Planet. Sci. 30, 237257.Google Scholar
Gottlieb, D. & Orszag, S. A. 1993 Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.Google Scholar
Grooms, I., Julien, K., Weiss, J. B. & Knobloch, E. 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 224501.Google Scholar
Heimpel, M. H. & Aurnou, J. M. 2007 Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540557.Google Scholar
Jones, C. A., Rotvig, J. & Abdulrahman, A. 2003 Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30 (14), 1731.Google Scholar
Jones, C. A., Soward, A. M. & Mussa, A. I. 2000 The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157179.Google Scholar
Julien, K. & Knobloch, E. 1998 Strongly nonlinear convection cells in a rapidly rotating fluid layer: the tilted $f$ -plane. J. Fluid Mech. 360, 141178.Google Scholar
Julien, K. & Knobloch, E. 2007 Reduced models for fluid flows with strong constraints. J. Math. Phys. 48, 065405.Google Scholar
Julien, K., Knobloch, E., Milliff, R. & Werne, J. 2006 Generalized quasi-geostrophy for spatially anistropic rotationally constrained flows. J. Fluid Mech. 555, 233274.Google Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012a Heat transport in low Rossby number Rayleigh–Bénard convection. Phys. Rev. Lett 109 (25), 254503.Google Scholar
Julien, K., Legg, S., McWilliams, J. & Werne, J. 1996 Rapidly rotating turbulent Rayleigh–Bénard convection. J. Fluid Mech. 322, 243273.Google Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012b Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 392428.Google Scholar
Julien, K. & Watson, M. 2009 Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J. Comput. Phys. 228, 14801503.Google Scholar
King, E. M. & Aurnou, J. M. 2012 Thermal evidence for Taylor Columns in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 85, 016313.Google Scholar
King, E. M. & Aurnou, J. M. 2013 Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. 110, 66886693.Google Scholar
King, E. M., Stellmach, S. & Aurnou, J. M. 2012 Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 691, 568582.Google Scholar
Morin, V. & Dormy, E. 2004 Time dependent $\beta $ -convection in rapidly rotating spherical shells. Phys. Fluids 16 (5), 16031609.Google Scholar
Olson, P. 2011 Laboratory experiments on the dynamics of the core. Phys. Earth Planet. Inter. 187, 139156.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.Google Scholar
Plaut, E. & Busse, F. H. 2002 Low-Prandtl-number convection in a rotating cylindrical annulus. J. Fluid Mech. 464, 345363.Google Scholar
Proudman, J. 1916 On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. Lond. A 92, 408424.Google Scholar
Roberts, P. H. 1968 On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. A 263, 93117.Google Scholar
Rotvig, J. & Jones, C. A. 2006 Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117140.Google Scholar
Sakai, S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.Google Scholar
Schaeffer, N. & Pais, M. A. 2011 On symmetry and anisotropy of Earth-core flows. Geophys. Res. Lett. 38, L10309.Google Scholar
Schubert, G. & Soderlund, K. 2011 Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92108.Google Scholar
Simitev, R. D. 2011 Double-diffusive convection in a rotating cylindrical annulus with conical caps. Phys. Earth Planet. Inter. 186, 183190.Google Scholar
Soderlund, K. M., King, E. M. & Aurnou, J. M. 2012 The influence of magnetic fields in planetary dynamo models. Earth Planet. Sci. Lett. 333–334, 920.Google Scholar
Spotz, W. F. & Swarztrauber, P. N. 2001 A performance comparison of associated Legendre projections. J. Comput. Phys. 168, 339355.Google Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.Google Scholar
Sreenivasan, B. & Jones, C. A. 2005 Structure and dynamics of the polar vortex in the Earth’s core. Geophys. Res. Lett. 32, L20301.Google Scholar
Sumita, I. & Olson, P. 2000 Laboratory experiments on high Rayleigh number thermal convection in a rapidly rotating hemispherical shell. Phys. Earth Planet. Inter. 117, 153170.Google Scholar
Taylor, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A 104, 213218.Google Scholar
Teed, R. J., Jones, C. A. & Hollerbach, R. 2012 On the necessary conditions for bursts of convection within the rapidly rotating cylindrical annulus. Phys. Fluids 24, 066604.Google Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.Google Scholar
Vorobieff, P. & Ecke, R. E. 2002 Turbulent rotating convection: an experimental study. J. Fluid Mech. 458, 191218.Google Scholar
Wicht, J. & Tilgner, A. 2010 Theory and modeling of planetary dynamos. Space Sci. Rev. 152, 501542.Google Scholar
Zhang, K. 1992 Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535556.Google Scholar
Zhang, K. 1994 On coupling between the Poincaré equation and the heat equation. J. Fluid Mech. 268, 211229.Google Scholar