Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T18:56:06.091Z Has data issue: false hasContentIssue false

Stratified wake of a tilted cylinder. Part 1. Suppression of a von Kármán vortex street

Published online by Cambridge University Press:  17 April 2012

Patrice Meunier*
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre, 49, rue F. Joliot-Curie, B.P. 146, F-13384 Marseille CEDEX 13, France
*
Email address for correspondence: meunier@irphe.univ-mrs.fr

Abstract

This experimental and numerical study considers the two-dimensional stability of a circular cylinder wake, whose axis is tilted with respect to a stable density gradient. When the Reynolds number increases, the wake transitions from a steady flow to a periodic von Kármán vortex street as in a homogeneous fluid. However, the presence of a moderate stratification delays the appearance of the von Kármán vortex street, in agreement with the stabilization of shear flows by a density gradient. This stabilization, which does not occur for a vertical cylinder, increases with the tilt angle of the cylinder and is maximum for a horizontal cylinder. The critical Reynolds number increases when the stratification increases and diverges at a Froude number of order one for a horizontal cylinder. This critical Reynolds number can be predicted using the Richardson number based on the projection of the gravity and the density gradient in the direction of the shear, as was proposed by Candelier (J. Fluid Mech., vol. 685, pp. 191–201) for a tilted stratified jet. This picture is completely different for a strongly stratified wake since a new unstable mode appears, creating a von Kármán vortex street with a smaller Strouhal number. This surprising result is due to the presence of tilted vortices with no vertical velocity, i.e. with horizontal elliptic streamlines. This mode occurs in a band of Froude numbers which becomes smaller and smaller when the tilt angle increases, and eventually disappears for a horizontal cylinder. The presence of the tilt has thus a large impact on the structure of the wake at small Froude numbers and might need to be taken into account in geophysical flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abdessemed, N., Sharma, A. S., Sherwin, S. & Theofilis, V. 2009 Transient growth analysis of the flow past a circular cylinder. Phys. Fluids 21.Google Scholar
2. Albarede, P. & Monkewitz, P. A. 1992 A model for the formation of oblique shedding and ‘chevron’ patterns in cylinder wakes. Phys. Fluids A 4, 744756.Google Scholar
3. Albarede, P. & Provansal, M. 1995 Quasi-periodic cylinder wakes and the Ginzburg–Landau model. J. Fluid Mech. 291, 191222.Google Scholar
4. Baines, P. G. 1987 Upstream blocking and air-flow over mountains. Annu. Rev. Fluid Mech. 19, 7597.Google Scholar
5. Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195.CrossRefGoogle Scholar
6. Boulanger, N., Meunier, P. & Le Dizès, S. 2007 Structure of a stratified tilted vortex. J. Fluid Mech. 583, 443458.Google Scholar
7. Boulanger, N., Meunier, P. & Le Dizès, S. 2008 Tilt-induced instability of a stratified vortex. J. Fluid Mech. 596, 120.Google Scholar
8. Boyer, D. L., Davies, P. A., Fernando, H. J. S. & Zhang, X. 1989 Linearly stratified flow past a horizontal circular cylinder. Phil. Trans. R. Soc. Lond. Ser. A 328, 501.Google Scholar
9. Browand, F. K. & Winant, C. D. 1972 Blocking ahead of a cylinder moving in a stratified fluid: an experiment. Geophys. Fluid Dyn. 4, 2953.Google Scholar
10. Brucker, K. A. & Sarkar, S. 2010 A comparative study of self-propelled and towed wakes in a stratified fluid. J. Fluid Mech. 652, 373404.Google Scholar
11. Canals, M., Pawlak, G. & MacCready, P. 2009 Tilted baroclinic tidal vortices. J. Phys. Oceanogr. 39, 333350.Google Scholar
12. Candelier, J., Dizès, S. L. & Millet, C. 2011 Three-dimensional instability of an inclined stratified plane jet. J. Fluid Mech. 685, 191201.Google Scholar
13. Cantwell, C. D. & Barkley, D. 2010 Computational study of subcritical response in flow past a circular cylinder. Phys. Rev. E 82, 026315.Google Scholar
14. Chen, J.-H., Pritchard, W. G. & Tavener, S. J. 1995 Bifurcation for flow past a cylinder between parallel planes. J. Fluid Mech. 284, 2341.Google Scholar
15. Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.Google Scholar
16. Chomaz, J.-M., Huerre, P. & Redekopp, L. G. 1988 Bifurcations to local and global modes in spatially-developing flows. Phys. Rev. Lett. 60, 25.Google Scholar
17. De Stadler, M. B., Sarkar, S. & Brucker, K. A. 2010 Effect of the Prandtl number on a stratified turbulent wake. J. Fluid Mech. 22, 095102.Google Scholar
18. Delbende, I. & Chomaz, J.-M. 1998 Nonlinear convective/absolute instabilities in parallel two-dimensional wakes. Phys. Fluids 10 (11), 27242736.Google Scholar
19. Diamessis, P., Spedding, G. & Domaradzki, J. 2011 Similarity scaling and vorticity structure in high-Reynolds-number stably stratified turbulent wakes. J. Fluid Mech. 671, 5295.CrossRefGoogle Scholar
20. Dommermuth, D. G., Rottman, J. W., Innis, G. E. & Novikov, E. A. 2002 Numerical simulation of the wake of a towed sphere in a weakly stratified fluid. J. Fluid Mech. 473, 83101.Google Scholar
21. Dusek, J., Le Gal, P. & Fraunie, P. 1994 A numerical and theoretical study of the first hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.CrossRefGoogle Scholar
22. Gourlay, M. J., Arendt, S. C., Fritts, D. C. & Werne, J. 2001 Numerical modeling of initially turbulent wakes with net momentum. Phys. Fluids 13, 37833802.Google Scholar
23. Hammond, D. A. & Redekopp, L. G. 1997 Global dynamics of symmetric and asymmetric wakes. J. Fluid Mech. 331, 231248.Google Scholar
24. Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
25. Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.Google Scholar
26. Kármán, T. v. 1912 Uber den mechanismus den widerstands, den ein bewegter korper in einer flussigkeit erfarht. Göttingen Nachr. Math. Phys. Kl. 12, 509.Google Scholar
27. Khor, M., Sheridan, J., Thompson, M. & Hourigan, K. 2008 Global frequency selection in the observed time-mean wakes of circular cylinders. J. Fluid Mech. 601, 425441.Google Scholar
28. Landau, L. & Lifchitz, E. 1971 Physique Théorique: Mécanique. Editions MIR.Google Scholar
29. Lin, J. T. & Pao, Y. H. 1979 Wakes in stratified fluids: a review. Annu. Rev. Fluid Mech. 11, 317338.Google Scholar
30. Marais, C., Godoy-Diana, R., Barkley, D. & Wesfried, J. E. 2011 Convective instability in inhomogeneous media: impulse response in the subcritical cylinder wake. Phys. Fluids 23, 014104.Google Scholar
31. Mathis, C., Provansal, M. & Boyer, L. 1984 The Benard–von Karman instability: an experimental study near the threshold. J . Phys. Lett. Paris 45, 483491.Google Scholar
32. Meunier, P. 2012 Stratified wake of a tilted cylinder. Part 2. Lee internal waves. J. Fluid Mech. 699, 198215.Google Scholar
33. Meunier, P., Diamessis, P. & Spedding, G. R. 2006 Self-preservation in stratified momentum wakes. Phys. Fluids 18, 106601.Google Scholar
34. Meunier, P. & Spedding, G. R. 2004 A loss of memory in stratified momentum wakes. Phys. Fluids 16 (2), 298305.Google Scholar
35. Meunier, P. & Spedding, G. R. 2006 Stratified propelled wakes. J. Fluid Mech. 552, 229256.Google Scholar
36. Miles, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10 (4), 496508.Google Scholar
37. Monkewitz, P. A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds number. Phys. Fluids 31, 9991006.Google Scholar
38. Noack, B. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.Google Scholar
39. Ohya, Y. & Nakamura, Y. 1990 Near wakes of a circular cylinder in stratified flows. Phys. Fluids A 2 (4), 481483.CrossRefGoogle Scholar
40. Pao, Y. H., Callahan, M. E. & Timm, G. K. 1968 Vortex streets in stably stratified fluids. Boeing Sci. Res. Lab. Doc. D1-82-0736.Google Scholar
41. Pesenson, M. Z. & Monkewitz, P. A. 1993 Frequency selection and global instabilities in 3-dimensional weakly nonparallel flow. Phys. Rev. Lett. 18, 27222725.CrossRefGoogle Scholar
42. Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech. 458, 407417.Google Scholar
43. Provansal, M., Mathis, C. & Boyer, L. 1987 Benard–von Karman instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
44. Rees, S. J. & Juniper, M. P. 2010 The effect of confinement on the stability of viscous planar jets and wakes. J. Fluid Mech. 656, 309336.Google Scholar
45. Sahin, M. & Owens, R. G. 2004 A numerical investigation of wall effects up to high blocage ratios on two-dimensional flow past a confined circular cylinder. Phys. Fluids 16, 13051320.Google Scholar
46. Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.Google Scholar
47. Sengupta, T., Singh, N. & Suman, V. 2010 Dynamical system approach to instability of flow past a circular cylinder. J. Fluid Mech. 656, 82115.Google Scholar
48. Spedding, G. R. 1997 The evolution of initially turbulent bluff-body wakes at high internal Froude number. J. Fluid Mech. 337, 283301.Google Scholar
49. Stewart, B., Thompson, M., Leweke, T. & Hourigan, K. 2010 The wake behind a cylinder rolling on a wall at varying rotation rates. J. Fluid Mech. 648, 225256.Google Scholar
50. Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.Google Scholar
51. Williamson, C. H. K. 1996 vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.Google Scholar
52. Xu, Y., Fernando, H. J. S. & Boyer, D. L. 1995 Turbulent wakes of stratified flow past a cylinder. Phys. Fluids 7 (9), 22432255.CrossRefGoogle Scholar
53. Zovatto, L. & Pedrizetti, G. 2001 Flow about a circular cylinder between parallel walls. J. Fluid Mech. 440, 125.Google Scholar