Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T07:04:32.983Z Has data issue: false hasContentIssue false

Steady vortex dipoles with general profile functions

Published online by Cambridge University Press:  07 February 2011

TRENTON R. ALBRECHT
Affiliation:
Department of Mathematics, Wichita State University, Wichita, KS 67260, USA
ALAN R. ELCRAT*
Affiliation:
Department of Mathematics, Wichita State University, Wichita, KS 67260, USA
KENNETH G. MILLER
Affiliation:
Department of Mathematics, Wichita State University, Wichita, KS 67260, USA
*
Email address for correspondence: elcrat@math.wichita.edu

Abstract

Vortex dipoles in a two-dimensional, inviscid flow are obtained by prescribing the profile function relating the vorticity to the stream function. The profile functions used are smooth, and the solutions obtained have a smooth transition from the exterior flow to the interior of the vortex. The dipoles are nearly elliptical, and this relates this work to the ‘supersmooth’ dipoles obtained recently by Kizner & Khvoles (Regular Chaotic Dyn., vol. 9, 2004, pp. 509–518). The solutions found here are obtained by an iterative method for solving the nonlinear partial differential equation for the stream function. This iterative method is both robust and flexible. Solutions are also obtained in a β-plane, and they are shielded, as has also been found in previous work.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Benjamin, T. B. 1976 The alliance of practical and analytical insights into the non-linear problems of fluid mechanics. In Applications of Methods of Functional Analysis to Problems in Mechanics (ed. Germain, P. & Neyroles, B.), Lecture Notes in Mathematics, vol. 503, pp. 829. Springer.Google Scholar
Boyd, J. & Ma, H. 1990 Numerical study of elliptical modons using spectral methods. J. Fluid Mech. 221, 597611.CrossRefGoogle Scholar
Burton, G. R. 1989 Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex. Acta Math. 163, 291309.CrossRefGoogle Scholar
Burton, G. R. 1996 Uniqueness for the circular vortex-pair in a uniform flow. Proc. R. Soc. Lond. A 452, 23432350.Google Scholar
Elcrat, A. R., Fornberg, B., Horn, M. & Miller, K. 2000 Some steady vortex flows past a circular cylinder. J. Fluid Mech. 409, 1327.CrossRefGoogle Scholar
Elcrat, A. R., Fornberg, B. & Miller, K. 2001 Some steady axisymmetric vortex flows past a sphere. J. Fluid Mech. 433, 315328.Google Scholar
Elcrat, A. R., Fornberg, B. & Miller, K. G. 2005 Stability of vortices in equilibrium with a cylinder. J. Fluid Mech. 544, 5368.Google Scholar
Elcrat, A. R., Fornberg, B. & Miller, K. G. 2008 Steady axisymmetric vortex flows with swirl and shear. J. Fluid Mech. 613, 395410.Google Scholar
Elcrat, A. R. & Miller, K. 1995 Rearrangements in steady multiple vortex flows. Commun. Part. Differ. Equ. 20, 14811490.Google Scholar
Eydeland, A. & Turkington, B. 1988 A computational method of solving free-boundary problems in vortex dynamics. J Comput. Phys. 78, 194214.Google Scholar
Flierl, G. 1987 Isolated eddy models in geophysics. Annu. Rev. Fluid Mech. 19, 493530.Google Scholar
Flierl, G., Larichev, V., McWilliams, J. & Reznik, G. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5, 141.CrossRefGoogle Scholar
Flierl, G., Stern, M. & Whitehead, J. Jr. 1983 The physical significance of modons: laboratory experiments and integral constraints. Dyn. Atmos. Oceans 7, 233263.Google Scholar
Hesthaven, J. S., Lynov, A. H., Nielsen, A. H., Rasmussen, J. J. & Schmidt, M. R. 1995 Dynamics of a nonlinear dipole vortex. Phys. Fluids 7, 22202229.Google Scholar
Khvoles, R., Berson, D. & Kizner, Z. 2005 The structure and evolution of elliptical barotropic modons. J. Fluid Mech. 530, 130.Google Scholar
Khvoles, R., Kizner, Z. & Kessler, D. 2010 Viscous selection of an elliptical dipole. J. Fluid Mech. 658, 492508.Google Scholar
Kizner, Z. & Khvoles, R. 2004 Two variations on the theme of Lamb–Chaplygin: supersmooth dipole and rotating multipoles. Regular Chaotic Dyn. 9, 509518.Google Scholar
Kizner, Z. & Reznik, G. 2010 Localized dipoles: from 2D to rotating shallow water. Theor. Comput. Fluid Dyn. 24, 101110.CrossRefGoogle Scholar
Kloeden, P. 1987 On the uniqueness of solitary Rossby waves. J. Austral. Maths Soc. B 28, 476485.Google Scholar
Meleshko, V. & van Heijst, G. 1994 On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid. J. Fluid Mech. 272, 157182.CrossRefGoogle Scholar
Pierrehumbert, R. 1980 A family of steady, translating vortex pairs with distributed vorticity. J. Fluid Mech. 99, 129144.CrossRefGoogle Scholar
Trieling, R., Sandbergen, R., van Heijst, G. & Kizner, Z. 2010 Barotropic elliptical dipoles in a rotating fluid. Theor. Comput. Fluid Dyn. 24, 111115.CrossRefGoogle Scholar
Turkington, B. 1983 On steady vortex flows in two dimensions. Part II. Commun. Part. Differ. Equ. 8, 10311071.Google Scholar
Verkley, W. T. M. 1993 A numerical method for finding form-preserving free solutions of the barotropic vorticity equations on a sphere. J. Atmos. Sci. 50, 14881503.2.0.CO;2>CrossRefGoogle Scholar
Wu, H. M., Overman, E. A. II & Zabusky, N. J. 1984 Steady-state solutions of the Euler equations in two dimensions: rotating and translating V-states with limiting cases. Part I. Numerical algorithms and results. J. Comput. Phys. 53, 4271.CrossRefGoogle Scholar