Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T17:32:33.943Z Has data issue: false hasContentIssue false

Stability of stationary barotropic modons by Lyapunov's direct method

Published online by Cambridge University Press:  26 April 2006

H. Sakuma
Affiliation:
Climate Dynamics Center, Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1565, USA
M. Ghil
Affiliation:
Climate Dynamics Center, Department of Atmospheric Sciences, and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1565, USA

Abstract

A new Lyapunov stability condition is formulated for the shallow-water equations, using a gauge-variable formalism. This sufficient condition is derived for the class of perturbations that conserve the total mass. It is weaker than existing stability criteria, i.e. it applies to a wider class of flows. Formal stability to infinitesimally small perturbations of arbitrary shape is obtained for two classes of large-scale geophysical flows: pseudo-eastward flow with constant shear, and localized coherent structures of modon type.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. D. I. 1985 Hamiltonian description of almost geostrophic flow. Geophys. Astrophys. Fluid Dyn. 33, 145171.Google Scholar
Abarbanel, H. D. I, Holm, D. D., Marsden, J. E. & Ratiu, T. S. 1986 Nonlinear stability analysis of stratified fluid equilibria.. Phil. Trans. R. Soc. Lond. A 318, 349409.Google Scholar
Andrews, D. G. 1984 On the existence of nonzonal flows satisfying sufficient conditions for stability. Geophys. Astrophys. Fluid Dyn. 28, 143256.Google Scholar
Arnol'D, V. I. 1965 Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid. Sov. Maths Dokl. 6, 773776.Google Scholar
Arnol'D, V. I. 1969 On an a priori estimate in the theory of hydrodynamical stability. Am. Math. Soc. Trans. Ser. 2, 79, 267269.Google Scholar
Arnol'D, V. I. 1978 Mathematical Methods of Classical Mechanics. Springer.
Benzi, R., Pierini, S., Salusti, E. & Vulpiani, A. 1982 On nonlinear hydrodynamic stability of planetary vortices. Geophys. Astrophys. Fluid Dyn. 20, 293306.Google Scholar
Blumen, W. 1968 On the stability of quasigeostrophic flow. J. Atmos. Sci. 25, 929931.Google Scholar
Carnevale, G. F., Vallis, G. K., Purini, R. & Briscolini, M. 1988 The role of initial conditions in flow stability with an application to modons. Phys. Fluids 31, 25672572.Google Scholar
Chern, S.-J. & Marsden, J. E. 1990 A note on symmetry and stability for fluid flows. Geophys. Astrophys. Fluid Dyn. 51, 1926.Google Scholar
Flierl, G. R. 1987 Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 19, 493530.Google Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5, 141.Google Scholar
Ghil, M. & Childress, S. 1987 Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Springer.
Goldstein, H. 1980 Classical Mechanics, 2nd edn. Addison-Wesley.
Holm, D. D., Marsden, J. E., Ratiu, T. S. & Weinstein, A. 1983 Nonlinear stability conditions and a priori estimates for barotropic hydrodynamics. Phys. Lett. 98A, 1521.Google Scholar
Holm, D. D., Marsden, J. E., Ratiu, T. S. & Weinstein, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1116.Google Scholar
Ingersoll, P. I. & Cuong, P. G. 1981 Numerical model of long-lived Jovian vortices. J. Atmos. Sci. 38, 20672076.Google Scholar
Kuo, H. L. 1973 Quasi-geostrophic flows and instability theory. Adv. Appl. Mech. 13, 247330.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1986 Two-dimensional drift vortices and their stability. Phys. Fluids 29, 133142.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1962 The Classical Theory of Fields, 2nd edn. Pergamon.
Lin, C. C. 1967 The Theory of Hydrodynamic Stability. Cambridge University Press.
Malanotte-Rizzoli, P. 1982 Planetary solitary waves in geophysical flows. Adv. Geophys. 24, 147224.Google Scholar
Maxworthy, T. & Redekopp, L. G. 1976 New theory of the Great Red Spot from solitary waves in the Jovian atmosphere. Nature 260, 509511.Google Scholar
Mcwilliams, J. C. 1980 An application of equivalent modons to atmospheric blocking. Dyn. Atmos. Oceans 5, 4366.Google Scholar
Mcwilliams, J. C., Flierl, G. R., Larichev, V. D. & Reznik, G. M. 1981 Numerical studies of barotropic modons. Dyn. Atmos. Oceans 5, 219238.Google Scholar
Palais, R. S. 1979 The principle of symmetric criticality. Commun. Math Phys. 69, 1930.Google Scholar
Pierini, S. 1985 On the stability of equivalent modons. Dyn. Atmos. Oceans 9, 273280.Google Scholar
Redekopp, L. G. 1977 On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725745.Google Scholar
Ripa, P. 1983 General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech. 126, 463489.Google Scholar
Sakuma, H. 1989 A new stability criterion for two-dimensional coherent eddies in the atmosphere and oceans. Ph.D. thesis, University of California, Los Angeles.
Salmon, R. 1988 Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225256.Google Scholar
Stern, M. E. 1975 Minimal properties of planetary eddies. J. Mar. Res. 33, 133.Google Scholar
Swaters, G. E. 1986 Stability conditions and a priori estimates for equivalent barotropic modons. Phys. Fluids 29, 14191422.Google Scholar
Tribbia, J. J. 1984 Modons in spherical geometry. Geophys. Astrophys. Fluid Dyn. 30, 131168.Google Scholar
Wan, Y. H. & Pulvirenti, M. 1985 Nonlinear stability of circular vortex patches. Commun. Math. Phys. 99, 435450.Google Scholar
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240243.Google Scholar