Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-18T12:31:41.774Z Has data issue: false hasContentIssue false

Slow motion of a sphere near a sinusoidal surface

Published online by Cambridge University Press:  16 November 2023

Gaojin Li*
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai 200240, PR China School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
*
Email address for correspondence: gaojinli@sjtu.edu.cn

Abstract

Particle motion near non-plane surfaces can exhibit intricate hydrodynamics, making it an attractive tool for manipulating particles in microfluidic devices. To understand the underlying physics, this work investigates the Stokesian dynamics of a sphere near a sinusoidal surface, using a combination of perturbation analysis and boundary element simulation. The Lorentz reciprocal theorem is employed to solve the particle mobility near a small-amplitude surface. Compared with a plane wall, the curved topography induces additional translation and rotation velocity components, with the direction depending on the location of the sphere and the wavelength of the surface. At a fixed distance from the surface, the longitudinal and vertical mobilities of the sphere are strongly affected by the wavelength and amplitude of the surface, whereas its transverse mobility is only mildly influenced. When a sphere settles perpendicular to a sinusoidal surface, the far-field hydrodynamic effect drives the particle towards the local hill, while the near-field effect attracts the particle to the valley. These results provide valuable insights into the particle motion near surfaces with complex geometry.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Assoudi, R., Chaoui, M., Feuillebois, F. & Allouche, H. 2018 Motion of a spherical particle along a rough wall in a shear flow. Z. Angew. Math. Phys. 69 (5), 130.CrossRefGoogle Scholar
Bechert, D.W. & Bartenwerfer, M. 1989 The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105129.CrossRefGoogle Scholar
Belyaev, A.V. 2017 Hydrodynamic repulsion of spheroidal microparticles from micro-rough surfaces. PLoS ONE 12 (8), e0183093.CrossRefGoogle ScholarPubMed
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (3), 038102.CrossRefGoogle ScholarPubMed
Bhagat, A.A.S., Bow, H., Hou, H.W., Tan, S.J., Han, J. & Lim, C.T. 2010 Microfluidics for cell separation. Med. Biol. Engng Comput. 48 (10), 9991014.CrossRefGoogle ScholarPubMed
Blake, J.R. & Chwang, A.T. 1974 Fundamental singularities of viscous flow. J. Engng Maths 8 (1), 2329.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3–4), 242251.CrossRefGoogle Scholar
Brenner, H. 1962 Effect of finite boundaries on the stokes resistance of an arbitrary particle. J. Fluid Mech. 12 (1), 3548.CrossRefGoogle Scholar
Cha, H., Fallahi, H., Dai, Y., Yuan, D., An, H., Nguyen, N. & Zhang, J. 2022 Multiphysics microfluidics for cell manipulation and separation: a review. Lab on a Chip 22 (3), 423444.CrossRefGoogle ScholarPubMed
Chastel, T. & Mongruel, A. 2016 Squeeze flow between a sphere and a textured wall. Phys. Fluids 28 (2), 023301.CrossRefGoogle Scholar
Chwang, A.T. & Wu, T.Y. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (4), 787815.CrossRefGoogle Scholar
Cooley, M.D.A. & O'Neill, M.E. 1969 On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16 (1), 3749.CrossRefGoogle Scholar
Cox, R.G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface–II. Small gap widths, including inertial effects. Chem. Engng Sci. 22 (12), 17531777.CrossRefGoogle Scholar
Dean, W.R. & O'Neill, M.E. 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika 10 (1), 1324.CrossRefGoogle Scholar
Di Carlo, D., Irimia, D., Tompkins, R.G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.CrossRefGoogle ScholarPubMed
Elfring, G.J. 2017 Force moments of an active particle in a complex fluid. J. Fluid Mech. 829, R3.CrossRefGoogle Scholar
Falade, A. & Brenner, H. 1988 First-order wall curvature effects upon the stokes resistance of a spherical particle moving in close proximity to a solid wall. J. Fluid Mech. 193, 533568.CrossRefGoogle Scholar
Faxén, H. 1922 Der widerstand gegen die bewegung einer starren kugel in einer zähen flüssigkeit, die zwischen zwei parallelen ebenen wänden eingeschlossen ist. Ann. Phys. 373 (10), 89119.CrossRefGoogle Scholar
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1980 a A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99 (4), 755783.CrossRefGoogle Scholar
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1980 b A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech. 99 (4), 739753.CrossRefGoogle Scholar
Georgiev, R.N., Toscano, S.O., Uspal, W.E., Bet, B., Samin, S., van Roij, R. & Eral, H.B. 2020 Universal motion of mirror-symmetric microparticles in confined Stokes flow. Proc. Natl Acad. Sci. USA 117 (36), 2186521872.CrossRefGoogle ScholarPubMed
Goldman, A.J., Cox, R.G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall-i motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637651.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer Science & Business Media.Google Scholar
Ishimoto, K., Gaffney, E.A. & Smith, D.J. 2021 Squirmer hydrodynamics near a periodic surface topography. arXiv:2109.05528.Google Scholar
Jeffery, G.B. 1915 On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 2 (1), 327338.CrossRefGoogle Scholar
Jeffrey, D.J. 1982 Low-Reynolds-number flow between converging spheres. Mathematika 29 (1), 5866.CrossRefGoogle Scholar
Jokerst, J.C., Emory, J.M. & Henry, C.S. 2012 Advances in microfluidics for environmental analysis. Analyst 137 (1), 2434.CrossRefGoogle ScholarPubMed
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Kunert, C., Harting, J. & Vinogradova, O.I. 2010 Random-roughness hydrodynamic boundary conditions. Phys. Rev. Lett. 105 (1), 016001.CrossRefGoogle ScholarPubMed
Kurzthaler, C. & Stone, H.A. 2021 Microswimmers near corrugated, periodic surfaces. Soft Matt. 17 (12), 33223332.CrossRefGoogle ScholarPubMed
Kurzthaler, C., Zhu, L., Pahlavan, A.A. & Stone, H.A. 2020 Particle motion nearby rough surfaces. Phys. Rev. Fluids 5 (8), 082101.CrossRefGoogle Scholar
Kynch, G.J. 1959 The slow motion of two or more spheres through a viscous fluid. J. Fluid Mech. 5 (2), 193208.CrossRefGoogle Scholar
Lecoq, N., Anthore, R., Cichocki, B., Szymczak, P. & Feuillebois, F. 2004 Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513, 247264.CrossRefGoogle Scholar
Li, G. & Ardekani, A.M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90 (1), 013010.CrossRefGoogle ScholarPubMed
Li, G. & Koch, D.L. 2020 Electrophoresis in dilute polymer solutions. J. Fluid Mech. 884, A9.CrossRefGoogle Scholar
Li, G., McKinley, G.H. & Ardekani, A.M. 2015 Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785, 486505.CrossRefGoogle Scholar
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.Google Scholar
Masoud, H. & Stone, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879, P1.CrossRefGoogle Scholar
Maude, A.D. 1961 End effects in a falling-sphere viscometer. Br. J. Appl. Phys. 12 (6), 293.CrossRefGoogle Scholar
Maude, A.D. 1963 The movement of a sphere in front of a plane at low reynolds number. Br. J. Appl. Phys. 14 (12), 894.CrossRefGoogle Scholar
Mehling, M. & Tay, S. 2014 Microfluidic cell culture. Curr. Opin. Biotechnol. 25, 95102.CrossRefGoogle ScholarPubMed
Moffatt, H.K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.CrossRefGoogle Scholar
Nam-Trung, N. 2012 Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12, 116.Google Scholar
O'Neill, M.E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1), 6774.CrossRefGoogle Scholar
O'Neill, M.E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (4), 705724.CrossRefGoogle Scholar
Pozrikidis, C. 1987 Creeping flow in two-dimensional channels. J. Fluid Mech. 180, 495514.CrossRefGoogle Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.CrossRefGoogle Scholar
Rad, S.H. & Najafi, A. 2010 Hydrodynamic interactions of spherical particles in a fluid confined by a rough no-slip wall. Phys. Rev. E 82 (3), 036305.CrossRefGoogle Scholar
Sajeesh, P. & Sen, A.K. 2014 Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17 (1), 152.CrossRefGoogle Scholar
Smoluchowski, M.V. 1911 On the mutual action of spheres which move in a viscous liquid. Bull. Acad. Sci. Cracovie A 1, 2839.Google Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Stimson, M. & Jeffery, G.B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. A 111 (757), 110116.Google Scholar
Stokes, G.G. 1901 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 1141.Google Scholar
Stone, H.A. & Samuel, A.D.T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77 (19), 4102.CrossRefGoogle ScholarPubMed
Uspal, W.E., Eral, B.H. & Doyle, P.S. 2013 Engineering particle trajectories in microfluidic flows using particle shape. Nat. Commun. 4 (1), 19.CrossRefGoogle ScholarPubMed
Yuan, D., Tan, S.H., Zhao, Q., Yan, S., Sluyter, R., Nguyen, N., Zhang, J. & Li, W. 2017 Sheathless dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid. RSC Adv. 7 (6), 34613469.CrossRefGoogle Scholar
Zhang, J., Yan, S., Alici, G., Nguyen, N., Di Carlo, D. & Li, W. 2014 Real-time control of inertial focusing in microfluidics using dielectrophoresis (dep). RSC Adv. 4 (107), 6207662085.CrossRefGoogle Scholar
Zhang, J., Yan, S., Yuan, D., Alici, G., Nguyen, N., Warkiani, M.E. & Li, W. 2016 Fundamentals and applications of inertial microfluidics: a review. Lab on a Chip 16 (1), 1034.CrossRefGoogle Scholar
Zhu, L., Lauga, E. & Brandt, L. 2013 Low-Reynolds-number swimming in a capillary tube. J. Fluid Mech. 726, 285311.CrossRefGoogle Scholar