Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T06:46:22.928Z Has data issue: false hasContentIssue false

Shape matters: entrapment of a model ciliate at interfaces

Published online by Cambridge University Press:  02 April 2020

Junichi Manabe
Affiliation:
Department of Finemechanics, Tohoku University, 6-6-01, Aoba, Aoba-ku, Sendai 980-8579, Japan
Toshihiro Omori
Affiliation:
Department of Finemechanics, Tohoku University, 6-6-01, Aoba, Aoba-ku, Sendai 980-8579, Japan
Takuji Ishikawa*
Affiliation:
Department of Finemechanics, Tohoku University, 6-6-01, Aoba, Aoba-ku, Sendai 980-8579, Japan
*
Email address for correspondence: ishikawa@bfsl.mech.tohoku.ac.jp

Abstract

The behaviours of micro-organisms at interfaces play important roles in various biological, medical and engineering phenomena. Despite its widely recognized importance, our understanding of swimming micro-organisms at interfaces is limited. Ferracci et al. (PLoS One, vol. 8, 2013, e75238) reported that the ciliate, Tetrahymena, was entrapped at a water–air interface, while it escaped from a solid wall. Although the entrapment was speculated to be induced by physical processes, the mechanism is still unclear. To clarify the entrapment phenomenon, we focus on cell shape and numerically investigate the behaviour of a swimming micro-organism at interfaces from a hydrodynamic point of view. The model cell is assumed to propel itself by generating homogeneous tangential stress above the cell body. The results reveal that two major shape parameters, i.e. fore-and-aft asymmetry and a constriction, are dominant in the entrapment phenomenon. The mechanism can be explained by the balance of two opposite rotational velocities: repelling velocity due to the ciliary beat and attracting velocity due to the collision at the interface. In other words, the mechanism can be understood by hydrodynamic and steric effects. Moreover, cells tend to be entrapped more by the water–air interface than by the solid wall, which agrees with experimental observations reported previously (Ferracci et al. 2013). Finally, we experimentally observe Tetrahymena thermophila entrapped on the surface of an air bubble, and qualitatively discuss the shape of entrapped cells. The knowledge obtained provides a basis for understanding the behaviours of swimming micro-organisms at various interfaces, both in nature and in industrial applications.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, I., Burrell, B., Reed, C., West, A. C. & Banta, S. 2017 Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr. Opin. Biotechnol. 45, 144155.CrossRefGoogle ScholarPubMed
Barry, M. T., Rusconi, R., Guasto, J. S. & Stocker, R. 2015 Shear-induced orientational dynamics and spatial heterogeneity in suspensions of motile phytoplankton. J. R. Soc. Interface 12, 20150791.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Bearon, R. N. & Hazel, A. L. 2015 The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771, R3.CrossRefGoogle Scholar
Berke, A., Turner, T., Horward, C. & Lauga, E. 2008 Hydrodynamics attraction of swimming microorganisms by surface. Phys. Rev. Lett. 101, 038102.CrossRefGoogle Scholar
Blake, J. 1975 On the movement of mucus in the lung. J. Biomech. 8, 179190.CrossRefGoogle ScholarPubMed
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.CrossRefGoogle Scholar
Bucs, S. S., Farhat, N., Kruithof, J. C., Picioreanu, C., van Loosdrecht, M. C. M. & Vrouwenvelder, J. S. 2018 Review on strategies for biofouling mitigation in spiral wound membrane systems. Desalination 434, 189197.CrossRefGoogle Scholar
Crowdy, D. & Samson, O. 2011 Hydrodynamic bound states of a low-Reynolds-number swimmer near a gap in a wall. J. Fluid Mech. 667, 309335.CrossRefGoogle Scholar
Crowdy, D. G. 2013 Wall effects on self-diffusiophoretic Janus particles: a theoretical study. J. Fluid Mech. 735, 473498.CrossRefGoogle Scholar
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S. & Goldstein, R. E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108, 1094010945.CrossRefGoogle ScholarPubMed
Drescher, K., Leptos, K. C., Tuval, I., Ishikawa, T., Pedley, T. J. & Goldstein, R. E. 2009 Dancing Volvox: Hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 102, 168101.CrossRefGoogle ScholarPubMed
Elgeti, J. & Gompper, G. 2015 Run-and-tumble dynamics of self-propelled particles in confinement. Eur. Phys. Lett. 109, 58003.CrossRefGoogle Scholar
Ezhilan, B. & Saintillan, D 2015 Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482522.CrossRefGoogle Scholar
Ferracci, J., Ueno, H., Numayama-Tsuruta, K., Imai, Y., Yamaguchi, T. & Ishikawa, T. 2013 Entrapment of ciliates at the water–air interface. PLoS One 8, e75238.CrossRefGoogle ScholarPubMed
Flemming, H.-C. 2002 Biofouling in water systems – cases, causes and countermeasures. Appl. Microbiol. Biotechnol. 59, 629640.CrossRefGoogle ScholarPubMed
Frymier, D., Ford, R., Berg, H. & Cummings, P. 1995 Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl Acad. Sci. USA 92, 61956199.CrossRefGoogle Scholar
Giacche, D., Ishikawa, T. & Yamaguchi, T. 2010 Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E 82, 13636.Google Scholar
Glassman, H. 1948 Surface active agents and their application in bacteriology. Bacteriol. Rev. 12, 105148.CrossRefGoogle ScholarPubMed
Harshey, R. M. 2003 Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57, 249273.CrossRefGoogle ScholarPubMed
Ishikawa, T. 2019 Perspective: swimming of ciliates under geometric constraints. J. Appl. Phys. 125, 200901.CrossRefGoogle Scholar
Ishikawa, T. & Kikuchi, K. 2018 Biomechanics of Tetrahymena escaping from a dead end. Proc. R. Soc. Lond. B 285, 20172368.Google ScholarPubMed
Ishikawa, T., Simmonds, M. P. & Pedley, T. J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E. A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88, 62702.Google Scholar
Ishimoto, K. & Gaffney, E. A. 2015 Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface 12, 20150172.CrossRefGoogle ScholarPubMed
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cell. eLife 3, e02403.Google Scholar
Klapper, I. & Dockery, J. 2010 Mathematical description of microbial biofilms. SIAM Rev. 52, 221265.CrossRefGoogle Scholar
Kolter, R. & Greenberg, E. P. 2006 The superficial life of microbes. Nature 441, 300302.CrossRefGoogle ScholarPubMed
Kristiansen, T., Hagemeister, J., Grave, M. & Hellung-Larsen, P. 1996 Surface mediated death of unconditioned Tetrahymena cells: effect of physical parameters, growth factors, hormones, surfactants. J. Cell Physiol. 169, 139148.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lauga, E., Diluzio, W., Whitesides, G. & Stone, H. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400412.CrossRefGoogle ScholarPubMed
Li, G. & Tang, J. X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103, 078101.CrossRefGoogle Scholar
Li, G. J. & Ardekani, A. M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90, 112.Google Scholar
Lindholdt, A., Dam-Johansen, K., Olsen, S. M., Yebra, D. M. & Kiil, S. 2015 Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review. J. Coat. Technol. Res. 12, 415444.CrossRefGoogle Scholar
Llopis, I. & Pagonabarra, I. 2010 Hydrodynamic interactions in a squirmer motion: swimming with a neighbor and close to a wall. J. Non-Newtonian Fluid Mech. 165, 946952.CrossRefGoogle Scholar
van Loosdrecht, M. C., Lyklema, J., Norde, W. & Zehnder, A. J. 1990 Influence of interfaces on microbial activity. Microbiol. Rev. 54, 7587.Google ScholarPubMed
van Loosdrecht, M. C. M., Lyklema, J., Norde, W. & Zehnder, A. J. B. 2003 Influence of interfaces on microbial activity. Microbiol. Rev. 54, 7587.Google Scholar
Lynch, J. F., Lappin-Scott, H. M. & Costerton, J. W. 2003 Microbial Biofilms. Cambridge University Press.Google Scholar
Neu, T. 1996 Significance of bacterial surface-active compounds in interaction of bacteria interfaces. Microbiol. Rev. 60, 151166.Google ScholarPubMed
Ohmura, T., Nishigami, Y., Taniguchi, A., Nonaka, S., Manabe, J., Ishikawa, T. & Ichikawa, M. 2018 Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates. Proc. Natl Acad. Sci. USA 115, 32313236.CrossRefGoogle ScholarPubMed
Omori, T. & Ishikawa, T. 2016 Upward swimming of a sperm cell in shear flow. Phys. Rev. E 93, 32402.Google ScholarPubMed
O’Toole, G., Kaplan, H. B. & Kolter, R. 2000 Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 4979.CrossRefGoogle ScholarPubMed
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Rea, M. A., Zammit, C. M. & Reith, F. 2016 Bacterial biofilms on gold grains-implications for geomicrobial transformations of gold. FEMS Microbiol. Ecol. 92, fiw082.CrossRefGoogle Scholar
Reboleiro-Rivas, P., Martín-Pascual, J., Juárez-Jiménez, B., Poyatos, J. M., Vílchez-Vargas, R., Vlaeminck, S. E., Rodelas, B. & González-López, J. 2015 Nitrogen removal in a moving bed membrane bioreactor for municipal sewage treatment: community differentiation in attached biofilm and suspended biomass. Chem. Engng J. 277, 209218.CrossRefGoogle Scholar
Riedel, I., Kruse, K. & Howard, J. 2005 A self-organized vortex array of hydrodynamically entrained sperm cells. Science 309, 300303.CrossRefGoogle ScholarPubMed
Rothschild, L. J. 1963 Non-random distribution of bull spermatazoa in a drop of sperm suspension. Nature 198, 12211222.CrossRefGoogle Scholar
Rusconi, R., Guasto, J. S. & Stocker, R 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212217.CrossRefGoogle Scholar
Schaar, K., Zottl, A. & Stark, H. 2015 Detention times of microswimmers close to surfaces: influence of hydrodynamic interactions and noise. Phys. Rev. Lett. 115, 38101.CrossRefGoogle ScholarPubMed
Schafer, A., Harms, H. & Zehnder, A. 1998 Bacterial accumulation at the air–water interface. Environ. Sci. Technol. 32, 37043712.CrossRefGoogle Scholar
Shum, H., Gaffney, E. A. & Smith, D. J. 2010 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. Lond. A 466, 17251748.CrossRefGoogle Scholar
Smith, D. J., Gaffney, E. A., Blake, J. R. & Kirkman-Brown, J. C. 2009 Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289320.CrossRefGoogle Scholar
Spagnolie, S. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.CrossRefGoogle Scholar
Tung, C., Ardon, F., Roy, A., Koch, D. L., Suarez, S. S. & Wu, M. 2015 Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114, 108102.CrossRefGoogle Scholar
Wagner, M. & Loy, A. 2002 Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13, 218227.CrossRefGoogle ScholarPubMed
Wang, S. & Ardekani, A. M. 2013 Swimming of a model ciliate near an air–liquid interface. Phys. Rev. E 87, 063010.Google Scholar
Wysocki, A., Elgeti, J. & Gompper, G. 2015 Giant adsorption of microswimmers: duality of shape asymmetry and wall curvature. Phys. Rev. E 91, 050302(R).Google ScholarPubMed
Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69, 377403.CrossRefGoogle Scholar
Zottl, A. & Stark, H. 2014 Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112, 118101.CrossRefGoogle ScholarPubMed

Manabe et al. supplementary movie

Entrapment of \emph{Tetrahymena thermophila} on air bubbles in PYD medium (Length of the movie is 18.8 sec, and the width of image is 270 micron).

Download Manabe et al. supplementary movie(Video)
Video 5.2 MB