Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-21T12:57:19.389Z Has data issue: false hasContentIssue false

Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence

Published online by Cambridge University Press:  25 May 2017

Nimish Pujara*
Affiliation:
Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
Evan A. Variano
Affiliation:
Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: pujara@berkeley.edu

Abstract

The statistics of rotational motion of small, inertialess triaxial ellipsoids are computed along Lagrangian trajectories extracted from direct numerical simulations of homogeneous isotropic turbulence. The total particle angular velocity and its components along the three principal axes of the particle are considered, expanding on the results of Chevillard & Meneveau (J. Fluid Mech., vol. 737, 2013, pp. 571–596) who showed results of the rotation rate of the particle’s principal axes. The variance of the particle angular velocity, referred to as the particle enstrophy, is found to increase as particles become elongated, regardless of whether they are axisymmetric. This trend is explained by considering the contributions of vorticity and strain rate to particle rotation. It is found that the majority of particle enstrophy is due to fluid vorticity. Strain-rate-induced rotations, which are sensitive to shape, are mostly cancelled by strain–vorticity interactions. The remainder of the strain-rate-induced rotations are responsible for weak variations in particle enstrophy. For particles of all shapes, the majority of the enstrophy is in rotations about the longest axis, which is due to alignment between the longest axis and fluid vorticity. The integral time scale for particle angular velocities about different axes reveals that rotations are most persistent about the longest axis, but that a full revolution is rare.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anczurowski, E. & Mason, S. G. 1968 Particle motions in sheared suspensions. XXIV. Rotation of rigid spheroids and cylinders. Proc. Soc. Rheol. 12, 209215.Google Scholar
Ashurst, Wm. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343.CrossRefGoogle Scholar
Batchelor, G. K. 1979 Mass transfer from a particle suspended in fluid with a steady linear ambient velocity distribution. J. Fluid Mech. 95, 369400.Google Scholar
Bordoloi, A. D. & Variano, E. 2017 Rotational kinematics of large cylindrical particles in turbulence. J. Fluid Mech. 815, 199222.Google Scholar
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.Google Scholar
Budelmann, B.-U. 1989 Hydrodynamic Receptor Systems in Invertebrates, pp. 607631. Springer.Google Scholar
Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.Google Scholar
Candelier, F., Einarsson, J. & Mehlig, B. 2016 Angular dynamics of a small particle in turbulence. Phys. Rev. Lett. 117, 204501.Google Scholar
Challabotla, N. R., Zhao, L. & Andersson, H. I. 2015 Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27, 061703.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.Google Scholar
Davis, R. H. 1991 Sedimentation of axisymmetric particles in shear flows. Phys. Fluids A 3 (9), 20512060.Google Scholar
Dietrich, W. E. 1982 Settling velocity of natural particles. Water Resour. Res. 18, 16151626.Google Scholar
Ding, E.-J. & Aidun, C. K. 2000 The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423, 317344.Google Scholar
Dusenbery, D. B. 2009 Living at Micro Scale: the Unexpected Physics of Being Small. Harvard University Press.Google Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015 Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27, 063301.Google Scholar
Einarsson, J., Johansson, A., Mahato, S. K., Mishra, Y. N., Angilella, J. R., Hanstorp, D. & Mehlig, B. 2013 Periodic and aperiodic tumbling of microrods advected in a microchannel flow. Acta Mechanica 224, 22812289.Google Scholar
Einarsson, J., Mihiretie, B. M., Laas, A., Ankardal, S., Angilella, J. R., Hanstorp, D. & Mehlig, B. 2016 Tumbling of asymmetric microrods in a microchannel flow. Phys. Fluids 28 (1), 013302.Google Scholar
Fuchs, H. L. & Gerbi, G. P. 2016 Seascape-level variation in turbulence- and wave-generated hydrodynamic signals experienced by plankton. Prog. Oceanogr. 141, 109129.Google Scholar
Girimaji, S. S. & Pope, S. B. 1990 Material-element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.Google Scholar
Goldsmith, H. L. & Mason, S. G. 1962 Particle motions in sheared suspensions XIII. The spin and rotation of disks. J. Fluid Mech. 12, 8896.CrossRefGoogle Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373400.CrossRefGoogle Scholar
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501.Google Scholar
Hinch, E. J. & Leal, L. G. 1979 Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92, 591608.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Jumars, P. A., Trowbridge, J. H., Boss, E. & Karp-Boss, L. 2009 Turbulence–plankton interactions: a new cartoon. Mar. Ecol. 30 (2), 133150.Google Scholar
Junk, M. & Illner, R. 2007 A new derivation of Jeffery’s equation. J. Math. Fluid Mech. 9, 455488.Google Scholar
Karp-Boss, L., Boss, E. & Jumars, P. A. 1996 Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. 34, 71107.Google Scholar
Kaya, T. & Koser, H. 2009 Characterization of hydrodynamic surface interactions of Escherichia coli cell bodies in shear flow. Phys. Rev. Lett. 103 (13), 138103.Google Scholar
Kiørboe, T. 2008 A Mechanistic Approach to Plankton Ecology. Princeton University Press.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.Google Scholar
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A. & Eyink, G. 2008 A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31.Google Scholar
Lundell, F. 2011 The effect of particle inertia on triaxial ellipsoids in creeping shear: from drift toward chaos to a single periodic solution. Phys. Fluids 23 (1), 011704.Google Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81 (1), 016323.Google ScholarPubMed
Lundell, F., Söderberg, L. D. & Alfredsson, P. H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195217.Google Scholar
Mallier, R. & Maxey, M. 1991 The settling of nonspherical particles in a cellular flow field. Phys. Fluids A 3, 14811494.Google Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.Google Scholar
Ni, R., Kramel, S., Ouellette, N. T. & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.Google Scholar
Ni, R., Ouellette, N. T. & Voth, G. A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.Google Scholar
Parsa, S.2013 Rotational dynamics of rod particles in fluid flows. PhD thesis, Wesleyan University.Google Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.Google Scholar
Parsa, S., Guasto, J. S., Kishore, M., Ouellette, N. T., Gollub, J. P. & Voth, G. A. 2011 Rotation and alignment of rods in two-dimensional chaotic flow. Phys. Fluids 23, 043302.Google Scholar
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.Google Scholar
Perlman, E., Burns, R., Li, Y. & Meneveau, C. 2007 Data exploration of turbulence simulations using a database cluster. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing Series: SC ’07, Reno, NV, Article 23. ACM.Google Scholar
Pope, S. B. 1990 Lagrangian microscales in turbulence. Phil. Trans. R. Soc. Lond. A 333, 309319.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13, 093030.Google Scholar
Rosén, T., Lundell, F. & Aidun, C. K. 2014 Effect of fluid inertia on the dynamics and scaling of neutrally buoyant particles in shear flow. J. Fluid Mech. 738, 563590.CrossRefGoogle Scholar
Shin, M. & Koch, D. L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.Google Scholar
Taylor, G. I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103, 5861.Google Scholar
Trevelyan, B. J. & Mason, S. G. 1951 Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6, 354367.Google Scholar
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech 49 (1), 249276.CrossRefGoogle Scholar
Wadell, H. 1932 Volume, shape, and roundness of rock particles. J. Geol. 40, 443451.Google Scholar
Wells, M. J. 1968 Sense organs and movement. In Lower Animals. McGraw-Hill.Google Scholar
Yarin, A. L., Gottlieb, O. & Roisman, I. V. 1997 Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.Google Scholar
Yu, H., Kanov, K., Perlman, E., Graham, J., Frederix, E., Burns, R., Szalay, A., Eyink, G. & Meneveau, C. 2012 Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbulence database. J. Turbul. 13, N12.Google Scholar
Zeff, B. W., Lanterman, D. D., Mcallister, R., Roy, R., Kostelich, E. J. & Lathrop, D. P. 2003 Measuring intense rotation and dissipation in turbulent flows. Nature 421, 146149.Google Scholar
Zhao, L., Challabotla, N. R., Andersson, H. I. & Variano, E. A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501.Google Scholar
Zimmermann, R., Gasteuil, Y., Bourgoin, M., Volk, R., Pumir, A. & Pinton, J.-F. 2011 Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys. Rev. Lett. 106 (15), 154501.CrossRefGoogle Scholar