Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T17:36:04.124Z Has data issue: false hasContentIssue false

The re-initiation mechanism of detonation diffraction in a weakly unstable gaseous mixture

Published online by Cambridge University Press:  21 May 2020

Lisong Shi
Affiliation:
Department of Mechanical Engineering and Interdisplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Ken Chun Kit Uy
Affiliation:
Department of Mechanical Engineering and Interdisplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Chih Yung Wen*
Affiliation:
Department of Mechanical Engineering and Interdisplinary Division of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
*
Email address for correspondence: cywen@polyu.edu.hk

Abstract

Numerical simulations were performed to investigate the re-initiation mechanism of a diffracted detonation wave near the critical channel width for a weakly unstable gas. Two scenarios were examined: diffraction of a planar detonation wave and of a cellular detonation wave inside the inlet channel. The results revealed that the critical channel width predicted using a cellular detonation wave is smaller than that predicted using a planar detonation wave. The re-initiation mechanisms are described in detail by tracing massless particles along both the plane of symmetry and the re-initiation path. For planar detonation diffractions, a compression wave is formed in the far field behind the diffracted shock. Re-initiation is closely related to the amplification of this compression wave and its coalescence with the diffracted shock. Depending on the inlet channel width, the strength of the reflected rarefaction wave is responsible for weakening the strength of the compression wave and its coalescence with the diffracted shock, consequently hindering the reaction of particles behind the diffracted shock wave. In cellular cases, the continuous collisions of transverse waves, which generate local explosion sites, sustain detonation wave propagation.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arienti, M. & Shepherd, J. 2005 A numerical study of detonation diffraction. J. Fluid Mech. 529, 117146.CrossRefGoogle Scholar
Austin, J., Pintgen, F. & Shepherd, J. 2005 Reaction zones in highly unstable detonations. Proc. Combust. Inst. 30, 18491857.CrossRefGoogle Scholar
Benedick, W., Knystautas, R. & Lee, J. 1984 Large-scale experiments on the transmission of fuel–air detonations from two-dimensional channels. Prog. Astronaut. Aeronaut. 94, 546555.Google Scholar
Benmahammed, M. A., Veyssiere, B., Khasainov, B. A. & Mar, M. 2016 Effect of gaseous oxidizer composition on the detonability of isooctane–air sprays. Combust. Flame 165, 198207.CrossRefGoogle Scholar
Bourlioux, A., Majda, A. J. & Roytburd, V. 1991 Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Maths 51, 303343.CrossRefGoogle Scholar
Chang, S. C. 1995 The method of space–time conservation element and solution element—a new approach for solving the Navier–Stokes and Euler equations. J. Comput. Phys. 119, 295324.CrossRefGoogle Scholar
Daimon, Y. & Matsuo, A. 2003 Detailed features of one-dimensional detonations. Phys. Fluids 15, 112122.CrossRefGoogle Scholar
Desbordes, D., Guerraud, C., Hamada, L. & Presles, H. 1993 Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems. Prog. Astronaut. Aeronaut. 153, 347359.Google Scholar
Edwards, D., Thomas, G. & Nettleton, M. 1979 The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95, 7996.CrossRefGoogle Scholar
Gallier, S., Le Palud, F., Pintgen, F., Mével, R. & Shepherd, J. 2017 Detonation wave diffraction in H2–O2–Ar mixtures. Proc. Combust. Inst. 36, 27812789.CrossRefGoogle Scholar
Gamezo, V. N., Desbordes, D. & Oran, E. S. 1999 Formation and evolution of two-dimensional cellular detonations. Combust. Flame 116, 154165.CrossRefGoogle Scholar
Han, W., Kong, W., Gao, Y. & Law, C. K. 2017 The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations. J. Fluid Mech. 813, 458481.CrossRefGoogle Scholar
He, L. & Lee, J. H. 1995 The dynamical limit of one-dimensional detonations. Phys. Fluids 7, 11511158.CrossRefGoogle Scholar
Jiang, Z. & Teng, H. 2012 Research on some fundamental problems of the universal framework for regular gaseous detonation initiation and propagation. Sci. Sin.-Phys. Mech. Astron. 42, 421435.CrossRefGoogle Scholar
Jones, D., Kemister, G., Oran, E. & Sichel, M. 1996 The influence of cellular structure on detonation transmission. Shock Waves 6, 119129.CrossRefGoogle Scholar
Kapila, A. K., Schwendeman, D. W., Quirk, J. J. & Hawa, T. 2002 Mechanisms of detonation formation due to a temperature gradient. Combust. Theor. Model. 6, 553594.CrossRefGoogle Scholar
Kawasaki, A. & Kasahara, J. 2019 A novel characteristic length of detonation relevant to supercritical diffraction. Shock Waves 30, 112.CrossRefGoogle Scholar
Khasainov, B., Virot, F. & Veyssière, B. 2013 Three-dimensional cellular structure of detonations in suspensions of aluminium particles. Shock Waves 23, 271282.CrossRefGoogle Scholar
Laffitte, P. 1925 Recherches expérimentales sur l’onde explosive et l’onde de choc. Ann. Phys. Ser. 10, 587694.CrossRefGoogle Scholar
Lee, J., Knystautas, R. & Yoshikawa, N. 1978 Photochemical initiation of gaseous detonations. Acta Astron. 5, 971982.CrossRefGoogle Scholar
Lee, J. H. 1996 On the critical diameter problem. In Dynamics of Exothermicity, pp. 321336. Gordon and Breech.Google Scholar
Lee, J. H. 2008 The Detonation Phenomenon. Cambridge University Press.CrossRefGoogle Scholar
Li, J., Ning, J., Kiyanda, C. B. & Ng, H. D. 2016 Numerical simulations of cellular detonation diffraction in a stable gaseous mixture. Propul. Power Res. 5, 177183.CrossRefGoogle Scholar
Liu, Y., Lee, J. & Knystautas, R. 1984 Effect of geometry on the transmission of detonation through an orifice. Combust. Flame 56, 215225.CrossRefGoogle Scholar
Maxwell, B. M., Bhattacharjee, R. R., Lau-Chapdelaine, S. S., Falle, S. A., Sharpe, G. J. & Radulescu, M. I. 2017 Influence of turbulent fluctuations on detonation propagation. J. Fluid Mech. 818, 646696.CrossRefGoogle Scholar
Mehrjoo, N., Gao, Y., Kiyanda, C. B., Ng, H. D. & Lee, J. H. 2015 Effects of porous walled tubes on detonation transmission into unconfined space. Proc. Combust. Inst. 35, 19811987.CrossRefGoogle Scholar
Mitrofanov, V. V. & Soloukhin, R. I. 1965 The diffraction of multifront detonation waves. Sov. Phys. Dokl. 9, 10551058.Google Scholar
Nagura, Y., Kasahara, J., Sugiyama, Y. & Matsuo, A. 2013 Comprehensive visualization of detonation-diffraction structures and sizes in unstable and stable mixtures. Proc. Combust. Inst. 34, 19491956.CrossRefGoogle Scholar
Pintgen, F. & Shepherd, J. 2009 Detonation diffraction in gases. Combust. Flame 156, 665677.CrossRefGoogle Scholar
Radulescu, M. I. 2018 A detonation paradox: Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combust. Flame. 195, 151162.CrossRefGoogle Scholar
Radulescu, M. I. & Borzou, B. 2018 Dynamics of detonations with a constant mean flow divergence. J. Fluid Mech. 845, 346377.CrossRefGoogle Scholar
Sharpe, G. 1997 Linear stability of idealized detonations. Proc. R. Soc. Lond. A 453, 26032625.CrossRefGoogle Scholar
Sharpe, G. & Falle, S. 2000 Numerical simulations of pulsating detonations: I. Nonlinear stability of steady detonations. Combust. Theor. Model. 4, 557574.CrossRefGoogle Scholar
Shen, H. & Parsani, M. 2017 The role of multidimensional instabilities in direct initiation of gaseous detonations in free space. J. Fluid Mech. 813, R4.CrossRefGoogle Scholar
Shen, H. & Wen, C.-Y. 2016 A characteristic space–time conservation element and solution element method for conservation laws II. Multidimensional extension. J. Comput. Phys. 305, 775792.CrossRefGoogle Scholar
Shen, H., Wen, C.-Y., Liu, K. & Zhang, D. 2015a Robust high-order space–time conservative schemes for solving conservation laws on hybrid meshes. J. Comput. Phys. 281, 375402.CrossRefGoogle Scholar
Shen, H., Wen, C.-Y., Parsani, M. & Shu, C.-W. 2017 Maximum-principle-satisfying space–time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668692.CrossRefGoogle Scholar
Shen, H., Wen, C.-Y. & Zhang, D.-L. 2015b A characteristic space–time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101118.CrossRefGoogle Scholar
Shi, L., Shen, H., Zhang, P., Zhang, D. & Wen, C. 2017 Assessment of vibrational non-equilibrium effect on detonation cell size. Combust. Sci. Technol. 189, 841853.CrossRefGoogle Scholar
Short, M. & Stewart, D. 1998 Cellular detonation stability. Part 1. A normal-mode linear analysis. J. Fluid Mech. 368, 229262.CrossRefGoogle Scholar
Skews, B. W. 1967 The shape of a diffracting shock wave. J. Fluid Mech. 29, 297304.CrossRefGoogle Scholar
Uy, K. C., Shi, L. & Wen, C. 2018 Chemical reaction mechanism related vibrational nonequilibrium effect on the Zel’dovich-von Neumann–Döring (ZND) detonation model. Combust. Flame 196, 174181.CrossRefGoogle Scholar
Uy, K. C. K., Shi, L. S. & Wen, C. Y. 2019 Prediction of half reaction length for H2O2Ar detonation with an extended vibrational nonequilibrium Zel’dovich-von Neumann–Döring (ZND) model. Intl J. Hydrog. Energy 44, 76677674.CrossRefGoogle Scholar
Wen, C.-Y., Massimi, H. S. & Shen, H. 2018 Extension of CE/SE method to non-equilibrium dissociating flows. J. Comput. Phys. 356, 240260.CrossRefGoogle Scholar
Yuan, X. Q., Mi, X. C., Ng, H. D. & Zhou, J. 2019 A model for the trajectory of the transverse detonation resulting from re-initiation of a diffracted detonation. Shock Waves 30, 115.Google Scholar
Zel’dovich, I. B. 1956 An experimental investigation of spherical detonation of gases. Sov. Phys. Tech. Phys. 1, 16891713.Google Scholar
Zhang, F. 2009 Shock Wave Science and Technology Reference Library. Springer.CrossRefGoogle Scholar