Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-02T08:09:23.027Z Has data issue: false hasContentIssue false

Numerical study on the non-equilibrium characteristics of high-speed atmospheric re-entry flow and radiation of aircraft based on fully coupled model

Published online by Cambridge University Press:  21 December 2023

Yaowen Du
Affiliation:
School of Astronautics, Beihang University, Beijing 102206, PR China
Surong Sun*
Affiliation:
School of Astronautics, Beihang University, Beijing 102206, PR China
Meijing Tan
Affiliation:
Science and Technology on Space Physics Laboratory, Beijing 100076, PR China
Heji Huang
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Beijing 100190, PR China
Cong Yan
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Beijing 100190, PR China
Xian Meng
Affiliation:
State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Beijing 100190, PR China
Xuan Chen
Affiliation:
Science and Technology on Space Physics Laboratory, Beijing 100076, PR China
Haixing Wang*
Affiliation:
School of Astronautics, Beihang University, Beijing 102206, PR China
*
Email addresses for correspondence: ssr18@buaa.edu.cn, whx@buaa.edu.cn
Email addresses for correspondence: ssr18@buaa.edu.cn, whx@buaa.edu.cn

Abstract

The strong coupling interactions of non-equilibrium flow, microscopic particle collisions and radiative transitions within the shock layer of hypersonic atmospheric re-entry vehicles makes accurate prediction of the aerothermodynamics challenging. Therefore, in this study a self-consistent non-equilibrium flow, collisional–radiative reactions and radiative transfer fully coupled model are established to study the non-equilibrium characteristics of the flow field and radiation of vehicle atmospheric re-entry. The comparison of the present calculation results with flight data of FIRE II and previous results in the literature shows a reasonable agreement. The thermal, chemical and excited energy level non-equilibrium phenomena are obtained and analysed for the different FIRE II trajectory points, which form the critical basis for studying the heat transfer and radiation. The non-equilibrium distribution of excited energy levels significantly exists in the post-shock and near-wall regions due to the rapid vibrational dissociation and electronic under-excitation, as well as the wall catalytic reactions. The analysis of stagnation-point heating of FIRE II illustrates that the translational–rotational convection and the dissociation component diffusion play key roles in the aerodynamic heating of the wall region. The spectrally resolved radiative intensity in the entire flow field indicates that the vacuum ultraviolet radiation caused by the high-energy nitrogen atomic spectral lines makes the main contribution to the radiative transfer. Finally, it is found that the non-equilibrium flow–radiation coupling effect can exacerbate the excited energy level non-equilibrium, and further affect the gas radiative properties and radiative transfer. This fully coupled study provides an effective method for reasonable prediction of atmospheric re-entry flow and radiation fields.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.D. Jr. 2006 Hypersonic and High-Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics.Google Scholar
Annaloro, J. & Bultel, A. 2014 Vibrational and electronic collisional-radiative model in air for Earth entry problems. Phys. Plasmas 21 (12), 123512.Google Scholar
Armenise, I., Capitelli, M., Colonna, G. & Gorse, G. 1996 Nonequilibrium vibrational kinetics in the boundary layer of re-entering bodies. J. Thermophys. Heat Transfer 10 (3), 397405.Google Scholar
Armenise, I. & Kustova, E.V. 2013 State-to-state models for CO2 molecules: from the theory to an application to hypersonic boundary layers. Chem. Phys. 415, 269281.Google Scholar
Arnold, J.O., Cooper, D.M., Park, C. & Prakash, S.G. 1979 Line-by-line transport calculations for Jupiter entry probes. In 14th AIAA Thermophysics Conference.Google Scholar
Beyer, J., Pfeiffer, M. & Fasoulas, S. 2022 Non-equilibrium radiation modeling in a gas kinetic simulation code. J. Quant. Spectrosc. Radiat. Transfer 280, 108083.Google Scholar
Bultel, A., Chéron, B.G., Bourdon, A., Motapon, O. & Schneider, I.F. 2006 Collisional-radiative model in air for earth re-entry problems. Phys. Plasmas 13 (4), 043502.Google Scholar
Campoli, L., Kunova, O., Kustova, E. & Melnik, M. 2020 Models validation and code profiling in state-to-state simulations of shock heated air flows. Acta Astronaut. 175, 493509.Google Scholar
Capitelli, M., Ferreira, C.M., Gordiets, B.F. & Osipov, A.I. 2001 Plasma kinetics in atmospheric gases. Plasma Phys. Control. Fusion 43 (3), 371372.Google Scholar
Capitelli, M., et al. 2007 Non-equilibrium plasma kinetics: a state-to-state approach. Plasma Sources Sci. Technol. 16 (1), S30S44.Google Scholar
Cauchon, D.L. 1967 Radiative heating results from the Fire II flight experiment at a reentry velocity of 11.4 km s−1. Tech. Mem. X-1402. NASA.Google Scholar
Chauveau, S., Deron, C., Perrin, M.Y., Rivière, P. & Soufiani, A. 2003 Radiative transfer in LTE air plasmas for temperatures up to 15,000 K. J. Quant. Spectrosc. Radiat. Transfer 77 (2), 113130.Google Scholar
Chauveau, S., Perrin, M.Y., Rivière, P.H. & Soufiani, A. 2002 Contributions of diatomic molecular electronic systems to heated air radiation. J. Quant. Spectrosc. Radiat. Transfer 72 (4), 503530.Google Scholar
Cheng, J.L., Wang, H.X. & Sun, S.R. 2016 Analysis of dissociation mechanism of CO2 in a micro-hollow cathode discharge. Chin. Phys. Lett. 33 (10), 108201.Google Scholar
Colombo, V., Ghedini, E. & Sanibondi, P. 2008 Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas. Prog. Nucl. Energy 50 (8), 921933.Google Scholar
Collen, P.L., Satchell, M., Di Mare, L. & Mcgilvray, M. 2022 The influence of shock speed variation on radiation and thermochemistry experiments in shock tubes. J. Fluid Mech. 948, A51.Google Scholar
Cornette, E.S. 1966 Forebody temperature and calorimeter heating rates measured during project Fire II reentry at 11.35 km s−1. Tech. Mem. X-1305. NASA.Google Scholar
Cruden, B.A. 2012 Electron density measurement in reentry shocks for lunar return. J. Thermophys. Heat Transfer 26 (2), 222230.Google Scholar
Cunto, W., Mendoza, C., Ochsenbein, F. & Zeippen, C.J. 1993 TOPbase at the CDS. Available at: http://vizier.u--strasbg.fr/topbase/topbase.html [retrieved Sept. 2006].Google Scholar
Davis, R.T. 1970 Numerical solution of the hypersonic viscous shock-layer equations. J. Spacecr. Rockets 8 (5), 843851.Google Scholar
Drawin, H.W. 1967 Collision and transport cross-sections. Tech. Rep. EUR-CEA-FC-383.Google Scholar
Du, Y.W., Sun, S.R., Tan, M.J., Zhou, Y., Chen, X., Meng, X. & Wang, H.X. 2022 Non-equilibrium simulation of energy relaxation for earth reentry utilizing a collisional-radiative model. Acta Astronaut. 193, 521537.Google Scholar
Dunn, M.G. & Kang, S. 1973 Theoretical and experimental studies of reentry plasmas. Cont. Rep. CR-2232. NASA.Google Scholar
Earls, L.T. 1935 Intensities in Π2−Σ2 transitions in diatomic molecules. Phys. Rev. 48 (5), 423424.Google Scholar
Esposito, F., Armenise, I. & Capitelli, M. 2006 N–N2 state to state vibrational-relaxation and dissociation rates based on quasi-classical calculations. Chem. Phys. 331 (1), 18.Google Scholar
Esposito, F., Armenise, I., Capitta, G. & Capitelli, M. 2008 O–O2 state-to-state vibrational relaxation and dissociation rates based on quasi-classical calculations. Chem. Phys. 351 (1–3), 9198.Google Scholar
Evans, J.S. 1959 An investigation of the effect of high temperature on the Schumann–Runge ultraviolet absorption continuum of oxygen. PhD dissertation, University of Tennessee.Google Scholar
Farbar, E. & Boyd, I.D. 2008 Simulation of FIRE II reentry flow using the direct simulation Monte Carlo method. In 40th Thermophysics Conference.Google Scholar
Farbar, E., Boyd, I.D. & Martin, A. 2013 Numerical prediction of hypersonic flowfields including effects of electron translational nonequilibrium. J. Thermophys. Heat Transfer 27 (4), 593606.Google Scholar
Feldick, A.M., Modest, M.F., Levin, D.A., Gnoffo, P. & Johnston, C.O. 2009 Examination of coupled continuum fluid dynamics and radiation in hypersonic simulations. In 47th AIAA Aerospace Sciences Meeting.Google Scholar
Gnoffo, P.A. 1999 Planetary-entry gas dynamics. Annu. Rev. Fluid Mech. 31 (1), 459494.Google Scholar
Gorelov, V.A. 1981 Probe measurements of the ionization of air behind strong shocks. Sov. Tech. Phys. Lett. 7, 12941297.Google Scholar
Guo, J., Lin, G., Zhang, J., Bu, X. & Li, H. 2019 Hypersonic aerodynamics of a deformed aeroshell in continuum and near-continuum regimes. Aerosp. Sci. Technol. 93, 105296.Google Scholar
Gupta, R.N. 1996 Viscous shock-layer study of thermochemical nonequilibrium. J. Thermophys. Heat Transfer 10 (2), 257266.Google Scholar
Gupta, R.N., Yos, J.M., Thompson, R.A. & Lee, K.P. 1990 A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. Tech. Rep. RP-1232. NASA.Google Scholar
Hornung, H.G., Gollan, R.J. & Jacobs, P.A. 2022 Computational analysis of experiments on shock detachment in hypersonic flow of nitrogen and carbon dioxide over a wedge. J. Fluid Mech. 951, A6.Google Scholar
Jo, S.M., Kwon, O.J. & Kim, J.G. 2020 Stagnation-point heating of Fire II with a non-Boltzmann radiation model. Intl J. Heat Mass Transfer 153, 119566.Google Scholar
Johnston, C.O. 2006 Nonequilibrium shock-layer radiative heating for earth and titan entry. PhD dissertation, Virginia Polytechnic Institute and State University.Google Scholar
Johnston, C.O., Hollis, B.R. & Sutton, K. 2008 Nonequilibrium stagnation-line radiative heating for Fire II. J. Spacecr. Rockets 45 (6), 11851195.Google Scholar
Johnston, C.O. & Panesi, M. 2018 Impact of state-specific flowfield modeling on atomic nitrogen radiation. Phys. Rev. Fluids 3 (1), 013402.Google Scholar
Kim, J.G., Kang, S.H. & Park, S.H. 2020 Thermochemical nonequilibrium modeling of oxygen in hypersonic air flows. Intl J. Heat Mass Transfer 148, 119059.Google Scholar
Kirby, K., Constantinides, E.R., Babeu, S., Oppenheimer, M. & Victor, G.A. 1979 Photoionization and photoabsorption cross sections of He, O, N2 and O2 for aeronomic calculations. Atom. Data Nucl. Data Tables 23 (1), 6381.Google Scholar
Kovacs, I. 1972 Rotational structure in the spectra of diatomic molecules. Phys. Today 25 (11), 5454.Google Scholar
Kramida, A., Ralchenko, Y. & Reader, J. 2018 Atomic Spectra Database. NIST. Available at: https://www.nist.gov/pml/atomic-spectra-database [retrieved Oct. 2022].Google Scholar
Laporta, V. & Bruno, D. 2013 Electron-vibration energy exchange models in nitrogen-containing plasma flows. J. Chem. Phys. 138 (10), 104319.Google Scholar
Laporta, V., Celiberto, R. & Wadehra, J.M. 2012 Theoretical vibrational-excitation cross sections and rate coefficients for electron-impact resonant collisions involving rovibrationally excited N2 and NO molecules. Plasma Sources Sci. Technol. 21 (5), 055018.Google Scholar
Laux, C.O. & Kruger, C.H. 1992 Arrays of radiative transition probabilities for the N2 first and second positive, no beta and gamma, ${\textrm{N}_2}^{+}$ first negative, and O2 Schumann–Runge band systems. J. Quant. Spectrosc. Radiat. Transfer 48 (1), 924.Google Scholar
Li, Q., Zeng, J., Su, W. & Wu, L. 2021 Uncertainty quantification in rarefied dynamics of molecular gas: Rate effect of thermal relaxation. J. Fluid Mech. 917, A58.Google Scholar
Liu, Y., Panesi, M., Sahai, A. & Vinokur, M. 2015 General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures. J. Chem. Phys. 142 (13), 134109.Google Scholar
Lotz, W. 1967 Electron-impact ionization cross-sections and ionization rate coefficients for atoms and ions. Astrophys. J. Suppl. Ser. 14, 207238.Google Scholar
Men'shov, I.S. & Nakamura, Y. 2000 Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows. Fluid Dyn. Res. 27, 305334.Google Scholar
Miró Miró, F., Beyak, E.S., Pinna, F. & Reed, H.L. 2021 Ionization and dissociation effects on boundary-layer stability. J. Fluid Mech. 907, A13.Google Scholar
Munafo, A., Liu, Y. & Panesi, M. 2015 Modeling of dissociation and energy transfer in shock-heated nitrogen flows. Phys. Fluids 27 (12), 127101.Google Scholar
Munafo, A., Mansour, N. & Panesi, M. 2017 A reduced-order NLTE kinetic model for radiating plasmas of outer envelopes of stellar atmospheres. Astrophys. J. 838 (2), 126.Google Scholar
Niu, Q., Yuan, Z., Dong, S. & Tan, H. 2018 Assessment of nonequilibrium air-chemistry models on species formation in hypersonic shock layer. Intl J. Heat Mass Transfer 127, 703716.Google Scholar
Noori, S., Ghasemloo, S. & Mani, M. 2017 Viscous shock layer around slender bodies with nonequilibrium air chemistry. Iran J. Sci. Technol. - Trans. Mech. Engng. 41 (4), 251264.Google Scholar
Palmer, G.E., White, T. & Alexander, P. 2010 Direct coupling of the NEQAIR radiation and DPLR CFD codes. In 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference.CrossRefGoogle Scholar
Panesi, M., Magin, T., Bourdon, A., Bultel, A. & Chazot, O. 2009 Fire II flight experiment analysis by means of a collisional-radiative model. J. Thermophys. Heat Transfer 23 (2), 236248.Google Scholar
Park, C. 1985 a On convergence of computation of chemically reacting flows. In 23rd Aerospace Sciences Meeting.Google Scholar
Park, C. 1985 b Nonequilibrium air radiation (NEQAIR) program: user's manual. Tech. Mem. TM-86707. NASA.Google Scholar
Park, C. 1993 Review of chemical-kinetic problems of future NASA missions. I. Earth entries. J. Thermophys. Heat Transfer 7 (3), 385398.Google Scholar
Park, C. 2008 Rate parameters for electronic excitation of diatomic molecules 1. Electron-impact processes. In 46th AIAA Aerospace Sciences Meeting and Exhibit.Google Scholar
Park, C., Jaffe, R.L. & Partridge, H. 2001 Chemical-kinetic parameters of hyperbolic earth entry. J. Thermophys. Heat Transfer 15 (1), 7690.Google Scholar
Passiatore, D., Sciacovelli, L., Cinnella, P. & Pascazio, G. 2022 Thermochemical non-equilibrium effects in turbulent hypersonic boundary layers. J. Fluid Mech. 941, A21.Google Scholar
Peach, G. 1962 Continuous absorption coefficients for non-hydrogenic atoms. Mon. Not. R. Astron. Soc. 124 (5), 371381.Google Scholar
Ren, X., Yuan, J., He, B., Zhang, M. & Cai, G. 2019 Grid criteria for numerical simulation of hypersonic aerothermodynamics in transition regime. J. Fluid Mech. 881, 585601.Google Scholar
Sahai, A., Johnston, C.O., Lopez, B. & Panesi, M. 2019 Flow-radiation coupling in CO2 hypersonic wakes using reduced-order non-Boltzmann models. Phys. Rev. Fluid 4 (9), 093401.Google Scholar
Sahai, A., Johnston, C.O., Lopez, B. & Panesi, M. 2020 Comparative analysis of reduced-order spectral models and grouping strategies for non-equilibrium radiation. J. Quant. Spectrosc. Radiat. Transfer 242, 106752.Google Scholar
Sahai, A., Lopez, B., Johnston, C.O. & Panesi, M. 2017 Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species. J. Chem. Phys. 147 (5), 054107.Google Scholar
Sanderson, S.R., Hornung, H.G. & Sturtevant, B. 2004 The influence of non-equilibrium dissociation on the flow produced by shock impingement on a blunt body. J. Fluid Mech. 516, 137.Google Scholar
Scalabrin, L.C. & Boyd, I.D. 2007 Numerical simulations of the FIRE-II convective and radiative heating rates. In 39th AIAA Thermophysics Conference.Google Scholar
Schramm, J.M., Hannemann, K. & Hornung, H.G. 2023 Hypersonic flow over spherically blunted cone capsules for atmospheric entry. Part 2. Vibrational non-equilibrium effects. J. Fluid Mech. 954, A32.Google Scholar
Sharma, M.P., Liu, Y. & Panesi, M. 2020 Coarse-grained modeling of thermochemical nonequilibrium using the multigroup maximum entropy quadratic formulation. Phys. Rev. E 101 (1), 013307.Google Scholar
Sohn, I., Li, Z., Levin, D.A. & Modest, M.F. 2012 Coupled DSMC-PMC radiation simulations of a hypersonic reentry. J. Thermophys. Heat Transfer 26 (1), 2235.Google Scholar
Sun, S.R. & Wang, H.X. 2014 Temporal evolution of excited level populations in a high-velocity argon plasma flow. Chin. Phys. Lett. 31 (9), 095205.Google Scholar
Sun, S.R., Wang, H.X., Mei, D.H., X, T.U. & Bogaerts, A. 2017 CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling. J. CO2 Util. 17, 220234.Google Scholar
Sun, S.R., Wang, H.X. & Zhu, T. 2020 Numerical analysis of chemical reaction processes in different anode attachments of a high-intensity argon arc. Contrib. Plasma Phys. 60 (3), e201900094.Google Scholar
Surzhikov, S.T. 2016 Radiative gas dynamics of the Fire-II superorbital space vehicle. Tech. Phys. 61 (3), 349359.Google Scholar
Teng, J., Wang, J., Li, H. & Chen, S. 2021 Interscale kinetic energy transfer in chemically reacting compressible isotropic turbulence. J. Fluid Mech. 912, A36.Google Scholar
Teulet, P., Sarrette, J.P. & Gomes, A.M. 1999 Calculation of electron impact inelastic cross sections and rate coefficients for diatomic molecules. Application to air molecules. J. Quant. Spectrosc. Radiat. Transfer 62 (5), 549569.Google Scholar
Teulet, P., Sarrette, J.P. & Gomes, A.M. 2001 Collisional–radiative modelling of one- and two-temperature air and air-sodium plasmas at atmospheric pressure with temperatures of 2000–12 000 K. J. Quant. Spectrosc. Radiat. Transfer 70 (2), 159187.Google Scholar
Wang, H.X., He, Q.S., Murphy, A.B., Zhu, T. & Wei, F.Z. 2017 a Numerical simulation of nonequilibrium species diffusion in a low-power nitrogen–hydrogen arcjet thruster. Plasma Chem. Plasma Process. 37 (3), 877895.Google Scholar
Wang, X.Y., Yan, C., Zheng, Y.K. & Li, E.L. 2017 b Assessment of chemical kinetic models on hypersonic flow heat transfer. Intl J. Heat Mass Transfer 111, 356366.Google Scholar
Wei, F.Z., Wang, H.X., Murphy, A.B., Sun, W.P. & Liu, Y. 2013 Numerical modelling of the nonequilibrium expansion process of argon plasma flow through a nozzle. J. Phys. D 46 (50), 505205.Google Scholar
Wu, Y., Xu, X., Chen, B. & Yang, Q. 2022 Theoretical and numerical study of the binary scaling law for electron distribution in thermochemical non-equilibrium flows under extremely high Mach number. J. Fluid Mech. 940, A3.Google Scholar
Xu, D., Wang, J. & Chen, S. 2022 Skin-friction and heat-transfer decompositions in hypersonic transitional and turbulent boundary layers. J. Fluid Mech. 941, A4.Google Scholar
Yan, Z., Fu, Y., Wang, L., Yu, C. & Li, X. 2022 Effect of chemical reaction on mixing transition and turbulent statistics of cylindrical Richtmyer–Meshkov instability. J. Fluid Mech. 941, A55.Google Scholar
Yang, Z., Wang, S. & Gao, Z. 2022 Studies on effects of wall temperature variation on heat transfer in hypersonic laminar boundary layer. Intl J. Heat Mass Transfer 190, 122790.Google Scholar
Zheng, Q., Wang, J., Mahbub Alam, M.D., Noack, B.R., Li, H. & Chen, S. 2021 Transfer of internal energy fluctuation in compressible isotropic turbulence with vibrational non-equilibrium. J. Fluid Mech. 919, A26.Google Scholar