Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-17T17:06:40.922Z Has data issue: false hasContentIssue false

The nascent coffee ring: how solute diffusion counters advection

Published online by Cambridge University Press:  18 June 2021

Madeleine Rose Moore*
Affiliation:
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
D. Vella
Affiliation:
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
J.M. Oliver
Affiliation:
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom
*
Email address for correspondence: moorem@maths.ox.ac.uk

Abstract

We study the initial evolution of the coffee ring that is formed by the evaporation of a thin, axisymmetric, surface-tension-dominated droplet containing a dilute solute. When the solutal Péclet number is large, we show that diffusion close to the droplet contact line controls the coffee-ring structure in the initial stages of evaporation. We perform a systematic matched asymptotic analysis for two evaporation models – a simple, non-equilibrium, one-sided model (in which the evaporative flux is taken to be constant across the droplet surface) and a vapour-diffusion limited model (in which the evaporative flux is singular at the contact line) – valid during the early stages in which the solute remains dilute. We call this the ‘nascent coffee ring’ and describe the evolution of its features, including the size and location of the peak concentration and a measure of the width of the ring. Moreover, we use the asymptotic results to investigate when the assumption of a dilute solute breaks down and the effects of finite particle size and jamming are expected to become important. In particular, we illustrate the limited validity of this model in the diffusive evaporative flux regime.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Article last updated 07 March 2023

References

REFERENCES

Adachi, E., Dimitrov, A.S. & Nagayama, K. 1995 Stripe patterns formed on a glass surface during droplet evaporation. Langmuir 11 (4), 10571060.CrossRefGoogle Scholar
Berteloot, G., Pham, C.-T., Daerr, A., Lequeux, F. & Limat, L. 2008 Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83 (1), 14003.CrossRefGoogle Scholar
Blossey, R. 2003 Self-cleaning surfaces – virtual realities. Nat. Mater. 2, 301306.CrossRefGoogle ScholarPubMed
Blossey, R. & Bosio, A. 2002 Contact line deposits on cDNA microarrays: a ‘twin-spot effect’. Langmuir 18, 29522954.CrossRefGoogle Scholar
Boulogne, F., Ingremeau, F. & Stone, H.A. 2016 Coffee-stain growth dynamics on dry and wet surfaces. J. Phys.: Condens. Matter 29 (7), 074001.Google ScholarPubMed
Castanet, G., Perrin, L., Caballina, O. & Lemoine, F. 2016 Evaporation of closely-spaced interacting droplets arranged in a single row. Intl J. Heat Mass Transfer 93, 788802.CrossRefGoogle Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.CrossRefGoogle Scholar
Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R. & Witten, T.A 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756765.CrossRefGoogle Scholar
Freed-Brown, J.E. 2015 Deposition from evaporating drops: power laws and new morphologies in coffee stains. PhD thesis. University of Chicago.Google Scholar
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.CrossRefGoogle Scholar
Harris, D.J., Hu, H., Conrad, J.C. & Lewis, J.A. 2007 Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98 (14), 148301.CrossRefGoogle ScholarPubMed
Hu, H. & Larson, R.G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.CrossRefGoogle Scholar
Hu, S., Wang, Y., Man, X. & Doi, M. 2017 Deposition patterns of two neighboring droplets: Onsager variational principle studies. Langmuir 33 (23), 59655972.CrossRefGoogle ScholarPubMed
Jing, J., et al. 1998 Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules. Proc. Natl Acad. Sci. USA 95 (14), 80468051.CrossRefGoogle ScholarPubMed
Kajiya, T. & Doi, M. 2011 Dynamics of drying process of polymer solution droplets: analysis of polymer transport and control of film profiles. J. Soc. Rheol. Japan 39 (1–2), 1728.Google Scholar
Kajiya, T., Kaneko, D. & Doi, M. 2008 Dynamical visualization of ‘coffee stain phenomenon’ in droplets of polymer solution via fluorescent microscopy. Langmuir 24, 1236912374.CrossRefGoogle ScholarPubMed
Kang, S.J., Vandadi, V., Felske, J.D. & Masoud, H. 2016 Alternative mechanism for coffee-ring deposition based on active role of free surface. Phys. Rev. E 94 (6), 063104.CrossRefGoogle Scholar
Kaplan, C.N. & Mahadevan, L. 2015 Evaporation-driven ring and film deposition from colloidal droplets. J. Fluid Mech. 781, R2.CrossRefGoogle Scholar
Kim, H., Boulogne, F., Um, E., Jacobi, I. an, Button, E. & Stone, H.A 2016 Controlled uniform coating from the interplay of marangoni flows and surface-adsorbed macromolecules. Phys. Rev. Lett. 116 (12), 124501.CrossRefGoogle ScholarPubMed
Kimura, M., Misner, M.J., Xu, T., Kim, S.H. & Russell, T.P. 2003 Long-range ordering of diblock copolymers induced by droplet pinning. Langmuir 19 (23), 99109913.CrossRefGoogle Scholar
Koh, Y.K. & Wong, C.C. 2006 In situ monitoring of structural changes during colloidal self-assembly. Langmuir 22, 897900.CrossRefGoogle ScholarPubMed
Lacey, A.A. 1982 The motion with slip of a thin viscous droplet over a solid surface. Stud. Appl. Maths 67 (3), 217230.CrossRefGoogle Scholar
Li, Y., Diddens, C., Segers, T., Wijshoff, H., Versluis, M. & Lohse, D. 2020 Evaporating droplets on oil-wetted surfaces: suppression of the coffee-stain effect. Proc. Natl Acad. Sci. USA 117 (29), 1675616763.CrossRefGoogle ScholarPubMed
Li, Y, Lv, P., Diddens, C., Tan, H., Wijshoff, H., Versluis, M. & Lohse, D. 2018 Evaporation-triggered segregation of sessile binary droplets. Phys. Rev. Lett. 120 (22), 224501.CrossRefGoogle ScholarPubMed
Mailleur, A., Pirat, C., Pierre-Louis, O. & Colombani, J. 2018 Hollow rims from water drop evaporation on salt substrates. Phys. Rev. Lett. 121, 214501.CrossRefGoogle ScholarPubMed
Marín, Á.G., Gelderblom, H., Susarrey-Arce, A., van Houselt, A., Lefferts, L., Gardeniers, J.G.E., Lohse, D. & Snoeijer, J.H. 2012 Building microscopic soccer balls with evaporating colloidal fakir drops. Proc. Natl Acad. Sci. USA 109 (41), 1645516458.CrossRefGoogle ScholarPubMed
Murisic, N. & Kondic, L. 2011 On evaporation of sessile drops with moving contact lines. J. Fluid Mech. 679, 219246.CrossRefGoogle Scholar
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Pham, T. & Kumar, S. 2017 Drying of droplets of colloidal suspensions on rough substrates. Langmuir 33 (38), 1006110076.CrossRefGoogle ScholarPubMed
Popov, Y.O. 2003 Singularities, universality and scaling in evaporative deposition patterns. PhD thesis, University of Chicago.Google Scholar
Popov, Y.O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.CrossRefGoogle ScholarPubMed
Sáenz, P.J., Wray, A.W., Che, Z., Matar, O.K., Valluri, P., Kim, J. & Sefiane, K. 2017 Dynamics and universal scaling law in geometrically-controlled sessile drop evaporation. Nat. Commun. 8, 14783.CrossRefGoogle Scholar
Shampine, L.F. 2007 Accurate numerical derivatives in MATLAB. ACM Trans. Math. Softw. 33, 26.CrossRefGoogle Scholar
Shmuylovich, L., Shen, A.Q. & Stone, H.A. 2002 Surface morphology of drying latex films: multiple ring formation. Langmuir 18 (9), 34413445.CrossRefGoogle Scholar
Smalyukh, I.I., Zribi, O.V., Butler, J.C., Lavrentovich, O.D. & Wong, G.C.L. 2006 Structure and dynamics of liquid crystalline pattern formation in drying droplets of DNA. Phys. Rev. Lett. 96 (17), 177801.CrossRefGoogle ScholarPubMed
Sneddon, I.N. 1966 Mixed boundary value problems in potential theory. North-Holland.Google Scholar
Swinehart, D.F. 1962 The Beer-Lambert law. J. Chem. Educ. 39 (7), 333.CrossRefGoogle Scholar
Van Dyke, M. 1964 Perturbation methods in fluid mechanics. Academic Press.Google Scholar
Witten, T.A. 2009 Robust fadeout profile of an evaporation stain. Europhys. Lett. 86 (6), 64002.CrossRefGoogle Scholar
Wray, A.W., Papageorgiou, D.T., Craster, R.V., Sefiane, K. & Matar, O.K. 2014 Electrostatic suppression of the ‘coffee stain effect’. Langmuir 30 (20), 58495858.CrossRefGoogle ScholarPubMed
Zheng, R. 2009 A study of the evaporative deposition process: pipes and truncated transport dynamics. Eur. Phys. J. E 29, 205218.CrossRefGoogle ScholarPubMed
Zhong, X. & Duan, F. 2016 Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles. Eur. Phys. J. E 39 (2), 16.CrossRefGoogle ScholarPubMed