Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T19:55:44.516Z Has data issue: false hasContentIssue false

A multiscale method to calculate filter blockage

Published online by Cambridge University Press:  09 November 2016

M. P. Dalwadi*
Affiliation:
Synthetic Biology Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
M. Bruna
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
I. M. Griffiths
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
*
Email address for correspondence: mohit.dalwadi@nottingham.ac.uk

Abstract

Filters that act by adsorbing contaminant onto their pore walls will experience a decrease in porosity over time, and may eventually block. As adsorption will generally be greater towards the entrance of a filter, where the concentration of contaminant particles is higher, these effects can also result in a spatially varying porosity. We investigate this dynamic process using an extension of homogenization theory that accounts for a macroscale variation in microstructure. We formulate and homogenize the coupled problems of flow through a filter with a near-periodic time-dependent microstructure, solute transport due to advection, diffusion and filter adsorption, and filter structure evolution due to the adsorption of contaminant. We use the homogenized equations to investigate how the contaminant removal and filter lifespan depend on the initial porosity distribution for a unidirectional flow. We confirm a conjecture made by Dalwadi et al. (Proc. R. Soc. Lond. A, vol. 471 (2182), 2015, 20150464) that filters with an initially negative porosity gradient have a longer lifespan and remove more contaminant than filters with an initially constant porosity, or worse, an initially positive porosity gradient. In addition, we determine which initial porosity distributions result in a filter that will block everywhere at once by exploiting an asymptotic reduction of the homogenized equations. We show that these filters remove more contaminant than other filters with the same initial average porosity, but that filters which block everywhere at once are limited by how large their initial average porosity can be.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. E.Filter element and method of making the same, 30 January 1951. US Patent 2 539 768.Google Scholar
Auriault, J.-L. & Adler, P. M. 1995 Taylor dispersion in porous media: analysis by multiple scale expansions. Adv. Water Resour. 18 (4), 217226.CrossRefGoogle Scholar
Barg, S., Koch, D. & Grathwohl, G. 2009 Processing and properties of graded ceramic filters. J. Am. Ceram. Soc. 92 (12), 28542860.CrossRefGoogle Scholar
Barhate, R. S. & Ramakrishna, S. 2007 Nanofibrous filtering media: filtration problems and solutions from tiny materials. J. Membr. Sci. 296 (1), 18.CrossRefGoogle Scholar
Belyaev, A. G., Pyatnitskii, A. L. & Chechkin, G. A. 1998 Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary. Siber. Math. J. 39 (4), 621644.CrossRefGoogle Scholar
Bensoussan, A., Lions, J.-L. & Papanicolaou, G. 1978 Asymptotic Analysis for Periodic Structures. North-Holland.Google Scholar
Bowen, W. R., Calvo, J. I. & Hernandez, A. 1995 Steps of membrane blocking in flux decline during protein microfiltration. J. Membr. Sci. 101 (1), 153165.CrossRefGoogle Scholar
Bruna, M. & Chapman, S. J. 2015 Diffusion in spatially varying porous media. SIAM J. Appl. Maths 75 (4), 16481674.CrossRefGoogle Scholar
Burggraaf, A. J. & Keizer, K. 1991 Synthesis of inorganic membranes. In Inorganic Membranes: Synthesis, Characteristics and Applications, pp. 1063. Springer.CrossRefGoogle Scholar
Chechkin, G. A. & Piatnitski, A. L. 1999 Homogenization of boundary-value problem in a locally periodic perforated domain. Appl. Anal. 71 (1–4), 215235.CrossRefGoogle Scholar
Chernyavsky, I. L., Leach, L., Dryden, I. L. & Jensen, O. E. 2011 Transport in the placenta: homogenizing haemodynamics in a disordered medium. Phil. Trans. R. Soc. Lond. A 369 (1954), 41624182.Google Scholar
Conca, C. 1985 On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Pures Appl. 64 (1), 3175.Google Scholar
Dalwadi, M. P., Griffiths, I. M. & Bruna, M. 2015 Understanding how porosity gradients can make a better filter using homogenization theory. Proc. R. Soc. Lond. A 471 (2182), 20150464.Google Scholar
Datta, S. & Redner, S. 1998 Gradient clogging in depth filtration. Phys. Rev. E 58 (2), R1203.CrossRefGoogle Scholar
Dickerson, D., Monnin, M., Rickle, G., Borer, M., Stuart, J., Velu, Y., Haberkamp, W. & Graber, J.Gradient density depth filtration system, 31 May 2005. US Patent Application 11/140801.Google Scholar
Fatima, T., Arab, N., Zemskov, E. P. & Muntean, A. 2011 Homogenization of a reaction–diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains. J. Engng Maths 69 (2–3), 261276.CrossRefGoogle Scholar
Fillaudeau, L. & Carrère, H. 2002 Yeast cells, beer composition and mean pore diameter impacts on fouling and retention during cross-flow filtration of beer with ceramic membranes. J. Membr. Sci. 196 (1), 3957.CrossRefGoogle Scholar
Griffiths, I. M., Kumar, A. & Stewart, P. S. 2014 A combined network model for membrane fouling. J. Colloid Interface Sci. 432, 1018.CrossRefGoogle ScholarPubMed
Griffiths, I. M., Kumar, A. & Stewart, P. S. 2016 Designing asymmetric multilayered membrane filters with improved performance. J. Membr. Sci. 511, 108118.CrossRefGoogle Scholar
Gupta, S. C. 2003 The Classical Stefan Problem: Basic Concepts, Modelling and Analysis. Elsevier.Google Scholar
Hornung, U. 2012 Homogenization and Porous Media, vol. 6. Springer.Google Scholar
Kaviany, M. 2012 Principles of Heat Transfer in Porous Media. Springer.Google Scholar
Krehel, O., Muntean, A. & Knabner, P. 2015 Multiscale modeling of colloidal dynamics in porous media including aggregation and deposition. Adv. Water Resour. 86, 209216.CrossRefGoogle Scholar
Lonsdale, H. K. 1982 The growth of membrane technology. J. Membr. Sci. 10 (2), 81181.CrossRefGoogle Scholar
Mei, C. C. & Vernescu, B. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific.CrossRefGoogle Scholar
Morel, F. M. M. & Hering, J. G. 1993 Principles and Applications of Aquatic Chemistry. Wiley.Google Scholar
van Noorden, T. L. 2009 Crystal precipitation and dissolution in a porous medium: effective equations and numerical experiments. Multiscale Model. Simul. 7 (3), 12201236.CrossRefGoogle Scholar
van Noorden, T. L. & Muntean, A. 2011 Homogenisation of a locally periodic medium with areas of low and high diffusivity. Eur. J. Appl. Maths 22 (05), 493516.CrossRefGoogle Scholar
Peter, M. A. & Böhm, M. 2009 Multiscale modelling of chemical degradation mechanisms in porous media with evolving microstructure. Multiscale Model Simul. 7 (4), 16431668.CrossRefGoogle Scholar
Ray, N., Elbinger, T. & Knabner, P. 2015 Upscaling the flow and transport in an evolving porous medium with general interaction potentials. SIAM J. Appl. Maths 75 (5), 21702192.CrossRefGoogle Scholar
Ray, N., van Noorden, T., Frank, F. & Knabner, P. 2012 Multiscale modeling of colloid and fluid dynamics in porous media including an evolving microstructure. Trans. Porous Med. 95 (3), 669696.CrossRefGoogle Scholar
Richardson, G. & Chapman, S. J. 2011 Derivation of the bidomain equations for a beating heart with a general microstructure. SIAM J. Appl. Maths 71 (3), 657675.CrossRefGoogle Scholar
Sánchez-Palencia, E. 1980 Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127. Springer.Google Scholar
Vandevivere, P. C., Bianchi, R. & Verstraete, W. 1998 Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Tech. Biotech. 72 (4), 289302.3.0.CO;2-#>CrossRefGoogle Scholar
Vida Simiti, I., Jumate, N., Moldovan, V., Thalmaier, G. & Sechel, N. 2012 Characterization of gradual porous ceramic structures obtained by powder sedimentation. J. Mat. Sci. Tech. 28 (4), 362366.CrossRefGoogle Scholar