Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-18T02:32:06.216Z Has data issue: false hasContentIssue false

Linear stability of a rotating liquid column revisited

Published online by Cambridge University Press:  06 January 2022

Pulkit Dubey
Affiliation:
Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH03824, USA Engineering Mechanics Unit, JNCASR, Bangalore, Karnataka560064, India
Anubhab Roy
Affiliation:
Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu600036, India
Ganesh Subramanian*
Affiliation:
Engineering Mechanics Unit, JNCASR, Bangalore, Karnataka560064, India
*
Email address for correspondence: sganesh@jncasr.ac.in

Abstract

We revisit the somewhat classical problem of the linear stability of a rigidly rotating liquid column in this article. Although the literature pertaining to this problem dates back to 1959, the relation between inviscid and viscous stability criteria has not yet been clarified. While the viscous criterion for stability, given by $We < n^2 + k^2 -1$, is both necessary and sufficient, this relation has only been shown to be sufficient in the inviscid case. Here, $We = \rho \varOmega ^2 a^3 / \gamma$ is the Weber number and measures the relative magnitudes of the centrifugal and surface tension forces, with $\varOmega$ being the angular velocity of the rigidly rotating column, $a$ the column radius, $\rho$ the density of the fluid and $\gamma$ the surface tension coefficient; $k$ and $n$ denote the axial and azimuthal wavenumbers of the imposed perturbation. We show that the subtle difference between the inviscid and viscous criteria arises from the surprisingly complicated picture of inviscid stability in the $We$$k$ plane. For all $n > 1$, the viscously unstable region, corresponding to $We > n^2 + k^2-1$, contains an infinite hierarchy of inviscidly stable islands ending in cusps, with a dominant leading island. Only the dominant island, now infinite in extent along the $We$ axis, persists for $n=1$. This picture may be understood, based on the underlying eigenspectrum, as arising from the cascade of coalescences between a retrograde mode, that is the continuation of the cograde surface-tension-driven mode across the zero Doppler frequency point, and successive retrograde Coriolis modes constituting an infinite hierarchy.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

André, P. 2017 Interstellar filaments and star formation. C. R. Geosci. 349 (5), 187197.CrossRefGoogle Scholar
Benjamin, T.B. 1967 Shearing flow over a wavy boundary. J. Fluid Mech. 6 (2), 127147.Google Scholar
Breysse, P.C., Kamionkowski, M. & Benson, A. 2014 Oscillations and stability of polytropic filaments. Mon. Not. R. Astron. Soc. 437 (1), 26752685.CrossRefGoogle Scholar
Caldarelli, M.M., Dias, O.J.C., Emparan, R. & Klemm, D. 2009 Black holes as lumps of fluid. J. High Energy Phys. 04, 024.CrossRefGoogle Scholar
Cardoso, V. & Dias, O.J.C. 2006 Rayleigh–Plateau and Gregor–Laflamme instabilities of black strings. Phys. Rev. Lett. 96, 181601.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1981 The Gravitational Instability of an Infinite Cylinder, pp. 516523. Dover Books on Physics Series, vol. 1. Dover Publications.Google Scholar
Chandrasekhar, S. & Fermi, E. 1953 Problems of gravitational stability in the presence of a magnetic field. Astrophys. J. 118, 116141.CrossRefGoogle Scholar
Chandrasekhar, S. & Lebovitz, N.R. 1964 Non-radial oscillations of gaseous masses. Astrophys. J. 140, 15171528.CrossRefGoogle Scholar
Chernyavsky, A., Kevrekidis, P.G. & Pelinovsky, D.E. 2018 Krein signature in Hamiltonian and $\mathbb {PT}$ - symmetric systems. Springer Tracts Mod. Phys. 280, 465491.CrossRefGoogle Scholar
Freundlich, J., Jog, C.J. & Combes, F. 2014 Local stability of a gravitating filament: a dispersion relation. Astron. Astrophys. 564, A7.CrossRefGoogle Scholar
Fukumoto, Y. 2003 The three-dimensional instability of a strained vortex tube revisited. J. Fluid Mech. 493, 287318.CrossRefGoogle Scholar
Gillis, J. 1961 Stability of a column of rotating viscous liquid. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 57, pp. 152–159. AMS.CrossRefGoogle Scholar
Gillis, J. & Kaufman, B. 1962 The stability of a rotating viscous jet. Q. Appl. Maths 19 (4), 301308.CrossRefGoogle Scholar
Hansen, C.J., Aizenman, M.L. & Ross, R.L. 1976 The equilibrium and stability of uniformly rotating, isothermal gas cylinders. Astrophys. J. 207, 736744.CrossRefGoogle Scholar
Henderson, K.L. & Barenghi, C.F. 2002 The stability of a superfluid rotating jet. J. Phys. A: Math. Gen. 35 (45), 96459655.CrossRefGoogle Scholar
Hocking, L.M. 1960 The stability of a rigidly rotating column of liquid. Mathematika 7 (1), 19.CrossRefGoogle Scholar
Hocking, L.M. & Michael, D.H. 1959 The stability of a column of rotating liquid. Mathematika 6 (1), 2532.CrossRefGoogle Scholar
Kubitschek, J.P. & Weidman, P.D. 2007 a The effect of viscosity on the stability of a uniformly rotating liquid column in zero gravity. J. Fluid Mech. 572, 261286.CrossRefGoogle Scholar
Kubitschek, J.P. & Weidman, P.D. 2007 b Helical instability of a rotating viscous liquid jet. Phys. Fluids 19 (11), 114108.CrossRefGoogle Scholar
Kubitschek, J.P. & Weidman, P.D. 2008 Helical instability of a rotating liquid jet. Phys. Fluids 20 (9), 091104.CrossRefGoogle Scholar
Mackay, R.S. & Meiss, J.D. 1987 Stability of Equilibria of Hamiltonian Systems, pp. 137153. CRC Press.Google Scholar
McKee, C.F. & Ostriker, E.C. 2007 Theory of star formation. Annu. Rev. Astron. Astrophys. 45, 565687.CrossRefGoogle Scholar
Miles, J.W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3 (2), 185204.CrossRefGoogle Scholar
Moore, D.W. & Saffman, P.G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346 (1646), 413425.Google Scholar
Motiei, M.M., Hosseinirad, M. & Abbassi, S. 2021 Gravitational instability of non-isothermal filamentary molecular clouds in presence of external pressure. Mon. Not. R. Astron. Soc. 502 (4), 61886200.CrossRefGoogle Scholar
Nagasawa, M. 1987 Gravitational instability of the isothermal gas cylinder with an axial magnetic field. Prog. Theor. Phys. 77 (3), 635652.CrossRefGoogle Scholar
Ostriker, J. 1964 a The equilibrium of polytropic and isothermal cylinders. Astrophys. J. 140, 10561066.CrossRefGoogle Scholar
Ostriker, J. 1964 b On the oscillations and the stability of a homogeneous compressible cylinder. Astrophys. J. 140, 15291546.CrossRefGoogle Scholar
Pedley, T.J. 1967 The stability of rotating flows with a cylindrical free surface. J. Fluid Mech. 30 (1), 127147.CrossRefGoogle Scholar
Plateau, J.A.F. 1873 Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires. Gauthier-Villars.Google Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 1 (1), 413.CrossRefGoogle Scholar
Rosenthal, D.K. 1962 The shape and stability of a bubble at the axis of a rotating liquid. J. Fluid Mech. 12 (3), 358366.CrossRefGoogle Scholar
Roy, A., Garg, P., Reddy, J.S. & Subramanian, G. 2021 Inertio-elastic instability of a vortex column. arXiv:2101.00805.Google Scholar
Roy, A. & Subramanian, G. 2014 Linearized oscillations of a vortex column: the singular eigenfunctions. J. Fluid Mech. 741, 404460.CrossRefGoogle Scholar
Sadhukhan, S., Mondal, S. & Chakraborty, S. 2016 Stability of rotating self-gravitating filaments: effects of magnetic field. Mon. Not. R. Astron. Soc. 459 (3), 30593067.CrossRefGoogle Scholar
Stodólkiewicz, J.S. 1963 On the gravitational instability of some magneto-hydrodynamical systems of astrophysical interest. Part III. Acta Astron. 13, 3054.Google Scholar
Tsai, C.-Y. & Widnall, S.E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73 (4), 721733.CrossRefGoogle Scholar
Weidman, P. 1994 Stability criteria for two immiscible fluids rigidly rotating in zero gravity. Revue Roumaine Sci. Tech. Sér. Méc. Appl. 39, 481496.Google Scholar
Weidman, P.D., Goto, M. & Fridberg, A. 1997 On the instability of inviscid, rigidly rotating immiscible fluids in zero gravity. Z. Angew. Math. Phys. 48 (6), 921950.CrossRefGoogle Scholar
Zeeman, E.C. 1976 Catastrophe theory. Sci. Am. 234 (4), 6583.CrossRefGoogle Scholar