Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T23:08:39.291Z Has data issue: false hasContentIssue false

Heterogeneous dispersions as microcontinuum fluids

Published online by Cambridge University Press:  11 February 2020

Benjamin E. Dolata
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Roseanna N. Zia*
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
*
Email address for correspondence: rzia@stanford.edu

Abstract

We present a non-local ‘microcontinuum’ constitutive equation describing particle suspensions undergoing heterogeneous flows in the low Stokes and particle Reynolds number regime. Most prior models rely on mesoscale averages of structural dynamics that smear out non-local effects or otherwise place strong restrictions on flow type. We relieve this restriction here by ensemble averaging the exact equations that govern the suspension at the microscale, thereby obtaining explicit structure-property connections. The result is a pointwise, heterogeneous ensemble average of the suspension stress valid for suspended particles of arbitrary shape, size, composition and concentration, as well as arbitrary sources of heterogeneity, including non-uniform shear fields, heterogeneous force fields or spatially varying volume fractions. This non-local model accounts for spatial and temporal variations in the flow structure over arbitrary length and time scales. We express the microcontinuum constitutive equation as a superposition of gradient operators that automatically accounts for flow heterogeneity over any length scale larger than the particle size. Batchelor’s result for a homogeneous suspension is recovered in the limit of zero gradients; non-zero gradient terms provide non-local corrections to the average stress and account for statistical heterogeneity in the suspension. We utilize energy methods to compute the influence of these gradient operators on the pointwise-averaged stress tensor, revealing a deep connection to the microhydrodynamics formalism. We apply this general framework to a dilute suspension of spherical particles and show that the resultant constitutive equations are consistent with experimental observations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agacy, R. L. 1999 Generalized Kronecker and permanent deltas, their spinor and tensor equivalents and applications. J. Math. Phys. 40 (4), 20552063.CrossRefGoogle Scholar
Aksel, N. 2002 A brief note from the editor on the ‘second-order fluid’. Acta Mech. 157 (1), 235236.CrossRefGoogle Scholar
Anderson, T. B. & Jackson, R. 1967 Fluid mechanical description of fluidized beds. Equations of motion. Ind. Engng Chem. Fundam. 6 (4), 527539.CrossRefGoogle Scholar
Askes, H. & Aifantis, E. C. 2011 Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Intl J. Solids Struct. 48 (13), 19621990.CrossRefGoogle Scholar
Auffray, N. 2013 Geometrical picture of third-order tensors. In Generalized Continua as Models for Materials, pp. 1740. Springer.CrossRefGoogle Scholar
Basset, A. B. 1888 A Treatise on Hydrodynamics: with Numerous Examples, vol. 2. Deighton, Bell and Company.Google Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (03), 545570.CrossRefGoogle Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (02), 245268.CrossRefGoogle Scholar
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83 (01), 97117.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972a The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56 (02), 375400.CrossRefGoogle Scholar
Batchelor, G. K. & Van Rensburg, R. W. J. 1986 Structure formation in bidisperse sedimentation. J. Fluid Mech. 166, 379407.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972b The determination of the bulk stress in a suspension of spherical particles to order c 2. J. Fluid Mech. 56 (3), 401427.CrossRefGoogle Scholar
Bergougnoux, L., Ghicini, S., Guazzelli, E. & Hinch, J. 2003 Spreading fronts and fluctuations in sedimentation. Phys. Fluids 15 (7), 18751887.CrossRefGoogle Scholar
Berret, J.-F. 2006 Rheology of wormlike micelles: equilibrium properties and shear banding transitions. In Molecular Gels, pp. 667720. Springer.CrossRefGoogle Scholar
Bleustein, J. L. & Green, A. E. 1967 Dipolar fluids. Intl J. Engng Sci. 5 (4), 323340.CrossRefGoogle Scholar
Brenner, H. & Haber, S. 1984 Symbolic operator solutions of Laplace’s and Stoke’s equations Part I Laplace’s equation. Chem. Engng Commun. 27 (5–6), 283295.CrossRefGoogle Scholar
Brunn, P. 1980 Faxen relations of arbitrary order and their application. Z. Angew. Math. Phys. 31 (3), 332343.CrossRefGoogle Scholar
Chang, C. S. & Gao, J. 1995 Second-gradient constitutive theory for granular material with random packing structure. Intl J. Solids Struct. 32 (16), 22792293.CrossRefGoogle Scholar
Coope, J. A. R. 1970 Irreducible Cartesian tensors. III. Clebsch–Gordan reduction. J. Math. Phys. 11 (5), 15911612.CrossRefGoogle Scholar
Dhont, J. K. G. 1999 A constitutive relation describing the shear-banding transition. Phys. Rev. E 60 (4), 4534.Google ScholarPubMed
Dhont, J. K. G. & Briels, W. J. 2002 Stresses in inhomogeneous suspensions. J. Chem. Phys. 117 (8), 39923999.CrossRefGoogle Scholar
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E. & Kessler, J. O. 2004 Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93 (9), 098103.CrossRefGoogle ScholarPubMed
Dunkel, J., Heidenreich, S., Bär, M. & Goldstein, R. E. 2013 Minimal continuum theories of structure formation in dense active fluids. New J. Phys. 15 (4), 045016.CrossRefGoogle Scholar
Ehrentraut, H. & Muschik, W. 1998 On symmetric irreducible tensors in d-dimensions. ARI Intl J. Phys. Engng Sci. 51 (2), 149159.Google Scholar
Einstein, A. 1906 Eine neue bestimmung der moleküldimension. Ann. Phys. 19, 289306.CrossRefGoogle Scholar
Einstein, A. 1911 Berichtigung zu meiner arbeit: Eine neue bestimmung der moleküldimensionen. Ann. Phys. 339 (3), 591592.CrossRefGoogle Scholar
Eringen, A. C. 1966 Theory of micropolar fluids. J. Math. Mech. 16, 118.Google Scholar
Felderhof, B. U. 1976 Force density induced on a sphere in linear hydrodynamics: II. Moving sphere, mixed boundary conditions. Physica A 84 (3), 569576.CrossRefGoogle Scholar
Frank, M., Anderson, D., Weeks, E. R. & Morris, J. F. 2003 Particle migration in pressure-driven flow of a Brownian suspension. J. Fluid Mech. 493, 363378.CrossRefGoogle Scholar
Gao, T., Hu, H. H. & Castañeda, P. P. 2011 Rheology of a suspension of elastic particles in a viscous shear flow. J. Fluid Mech. 687, 209237.CrossRefGoogle Scholar
Grad, H. 1952 Statistical mechanics, thermodynamics, and fluid dynamics of systems with an arbitrary number of integrals. Commun. Pure Appl. Maths 5 (4), 455494.CrossRefGoogle Scholar
Haber, S. & Brenner, H. 1984 Symbolic operator solutions of Laplace’s and Stoke’s equations Part II Stokes flow past a rigid sphere. Chem. Engng Commun. 27 (5–6), 297311.CrossRefGoogle Scholar
Hadamard, J. S. 1911 Mouvement permanent lent d’une sphère liquide et visqueuse dans un liquide visqueux. C. R. Acad. Sci. Paris 152, 17351752.Google Scholar
Halsey, T. C. 1992 Electrorheological fluids. Science 258 (5083), 761766.CrossRefGoogle ScholarPubMed
Halsey, T. C. & Toor, W. 1990 Structure of electrorheological fluids. Phys. Rev. Lett. 65 (22), 2820.CrossRefGoogle ScholarPubMed
Hemingway, E. J. & Fielding, S. M. 2018 Edge-induced shear banding in entangled polymeric fluids. Phys. Rev. Lett. 120 (13), 138002.CrossRefGoogle ScholarPubMed
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.CrossRefGoogle Scholar
Jackson, R. 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Engng Sci. 52 (15), 24572469.CrossRefGoogle Scholar
Jakata, K. & Every, A. G. 2008 Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs, and InSb. Phys. Rev. B 77 (17), 174301.CrossRefGoogle Scholar
Jeffrey, D. J. 1973 Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A 335, 355367.Google Scholar
Jin, H., Kang, K., Ahn, K. H., Briels, W. J. & Dhont, J. K. G. 2018 Non-local stresses in highly non-uniformly flowing suspensions: the shear-curvature viscosity. J. Chem. Phys. 149 (1), 014903.CrossRefGoogle ScholarPubMed
Kirchhoff, G. R. 1876 Vorlesungen über Mathematische Physik: Mechanik, vol. 1. Teubner.Google Scholar
Koh, C. J., Hookham, P. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 132.CrossRefGoogle Scholar
Ladyzhenskaya, O. A. 1969 The Mathematical Theory of Viscous Incompressible Flow, vol. 2. Gordon and Breach.Google Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.CrossRefGoogle Scholar
Lhuillier, D. 1992 Ensemble averaging in slightly non-uniform suspensions. Eur. J. Mech. (B/Fluids) 11 (6), 649661.Google Scholar
Lyon, M. K. & Leal, L. G. 1998a An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 1. Monodisperse systems. J. Fluid Mech. 363, 2556.CrossRefGoogle Scholar
Lyon, M. K. & Leal, L. G. 1998b An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. Part 2. Bidisperse systems. J. Fluid Mech. 363, 5777.CrossRefGoogle Scholar
Maranganti, R. & Sharma, P. 2007 A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55 (9), 18231852.CrossRefGoogle Scholar
Masselon, C., Salmon, J.-B. & Colin, A. 2008 Nonlocal effects in flows of wormlike micellar solutions. Phys. Rev. Lett. 100 (3), 038301.CrossRefGoogle ScholarPubMed
Nadim, A. 1996 A concise introduction to surface rheology with application to dilute emulsions of viscous drops. Chem. Engng Commun. 148 (1), 391407.CrossRefGoogle Scholar
Nadim, A. & Stone, H. A. 1991 The motion of small particles and droplets in quadratic flows. Stud. Appl. Maths 85 (1), 5373.CrossRefGoogle Scholar
O’Brien, R. W. 1979 A method for the calculation of the effective transport properties of suspensions of interacting particles. J. Fluid Mech. 91 (01), 1739.CrossRefGoogle Scholar
Olmsted, P. D. 2008 Perspectives on shear banding in complex fluids. Rheol. Acta 47 (3), 283300.CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2012 Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.CrossRefGoogle Scholar
Prosperetti, A. 2004 The average stress in incompressible disperse flow. Intl J. Multiphase Flow 30 (7–8), 10111036.CrossRefGoogle Scholar
Prosperetti, A., Zhang, Q. & Ichiki, K. 2006 The stress system in a suspension of heavy particles: antisymmetric contribution. J. Fluid Mech. 554, 125146.CrossRefGoogle Scholar
Raja, R. V., Subramanian, G. & Koch, D. L. 2010 Inertial effects on the rheology of a dilute emulsion. J. Fluid Mech. 646, 255296.CrossRefGoogle Scholar
Ramaswamy, M., Lin, N. Y. C., Leahy, B. D., Ness, C., Fiore, A. M., Swan, J. W. & Cohen, I. 2017 How confinement-induced structures alter the contribution of hydrodynamic and short-ranged repulsion forces to the viscosity of colloidal suspensions. Phys. Rev. X 7 (4), 041005.Google Scholar
Ramkissoon, H. & Majumdar, S. R. 1976 Representations and fundamental singular solutions in micropolar fluid. Z. Angew. Math. Mech. 56 (5), 197203.CrossRefGoogle Scholar
Rybczynski, W. 1911 On the translatory motion of a fluid sphere in a viscous medium. Bull. Acad. Sci., Cracow A 4046.Google Scholar
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189 (4760), 209210.CrossRefGoogle Scholar
Słomka, J. & Dunkel, J. 2017 Geometry-dependent viscosity reduction in sheared active fluids. Phys. Rev. Fluids 2 (4), 043102.CrossRefGoogle Scholar
Sonn-Segev, A., Bernheim-Groswasser, A., Diamant, H. & Roichman, Y. 2014 Viscoelastic response of a complex fluid at intermediate distances. Phys. Rev. Lett. 112 (8), 088301.CrossRefGoogle Scholar
Stokes, G. G. 1851 On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, vol. 9. Pitt Press Cambridge.Google Scholar
Stokes, V. K. 1966 Couple stresses in fluids. Phys. Fluids 9 (9), 17091715.CrossRefGoogle Scholar
Strating, P. 1995 The stress tensor in colloidal suspensions. J. Chem. Phys. 103 (23), 1022610237.CrossRefGoogle Scholar
Swan, J. W. & Brady, J. F. 2011 The hydrodynamics of confined dispersions. J. Fluid Mech. 687, 254299.CrossRefGoogle Scholar
Taylor, G. I. 1932 The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A 138 (834), 4148.Google Scholar
Tee, S., Mucha, P. J., Cipelletti, L., Manley, S., Brenner, M. P., Segre, P. N. & Weitz, D. A. 2002 Nonuniversal velocity fluctuations of sedimenting particles. Phys. Rev. Lett. 89 (5), 054501.CrossRefGoogle ScholarPubMed
Tirumkudulu, M., Mileo, A. & Acrivos, A. 2000 Particle segregation in monodisperse sheared suspensions in a partially filled rotating horizontal cylinder. Phys. Fluids 12 (6), 16151618.CrossRefGoogle Scholar
Whitmore, R. L. 1955 The sedimentation of suspensions of spheres. Brit. J. Appl. Phys. 6 (7), 239245.CrossRefGoogle Scholar
Wilemski, G. 1976 On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion. J. Stat. Phys. 14 (2), 153169.CrossRefGoogle Scholar
Wolgemuth, C. W. 2008 Collective swimming and the dynamics of bacterial turbulence. Biophys. J. 95 (4), 15641574.CrossRefGoogle ScholarPubMed
Zakhari, M. E. A., Anderson, P. D. & Hütter, M. 2018 Modeling the shape dynamics of suspensions of permeable ellipsoidal particles. J. Non-Newtonian Fluid Mech. 259, 2331.CrossRefGoogle Scholar
Zhang, D. Z. & Prosperetti, A. 1994a Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185219.CrossRefGoogle Scholar
Zhang, D. Z. & Prosperetti, A. 1994b Ensemble phase-averaged equations for bubbly flows. Phys. Fluids 6 (9), 29562970.CrossRefGoogle Scholar
Zhang, D. Z. & Prosperetti, A. 1997 Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Intl J. Multiphase Flow 23 (3), 425453.CrossRefGoogle Scholar
Zhou, G. & Prosperetti, A. 2020 Lamb’s solution and the stress moments for a sphere in Stokes flow. Eur. J. Mech. (B/Fluids) 79, 270282.CrossRefGoogle Scholar
Zou, W.-N., Zheng, Q.-S., Du, D.-X. & Rychlewski, J. 2001 Orthogonal irreducible decompositions of tensors of high orders. Math. Mech. Solids 6 (3), 249267.CrossRefGoogle Scholar