Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T22:50:07.283Z Has data issue: false hasContentIssue false

Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization

Published online by Cambridge University Press:  23 May 2016

S. J. Laurence*
Affiliation:
Department of Aerospace Engineering, University of Maryland, College Park, MD 20742, USA
A. Wagner
Affiliation:
Institute of Aerodynamics and Flow Technology, Spacecraft Department, German Aerospace Center, Bunsenstraße 10, 37073 Göttingen, Germany
K. Hannemann
Affiliation:
Institute of Aerodynamics and Flow Technology, Spacecraft Department, German Aerospace Center, Bunsenstraße 10, 37073 Göttingen, Germany
*
Email address for correspondence: stuartl@umd.edu

Abstract

Visualization experiments are performed to investigate the development of instability waves within the boundary layer on a slender cone under high Mach number conditions. The experimental facility is a reflected-shock wind tunnel, allowing both low (Mach-8 flight equivalent) and high-enthalpy conditions to be simulated. Second-mode instability waves are visualized using a high-speed schlieren set-up, with pulse bursting of the light source allowing the propagation speed of the wavepackets to be unambiguously resolved. This, in combination with wavelength information derived from the images, enables the calculation of the disturbance frequencies. At the lower-enthalpy conditions, we concentrate on the late laminar and transitional regions of the flow. General characteristics are revealed through time-resolved and ensemble-averaged spectra on both smooth and porous ceramic surfaces of the cone. Analysis of the development of individual wavepackets is then performed. It is found that the wavepacket structures evolve from a ‘rope-like’ appearance to become more interwoven as the disturbance nears breakdown. The wall-normal disturbance distributions of both the fundamental and first harmonic, which initially have local maxima at the wall and near $y/{\it\delta}=0.7$–0.75, exhibit an increase in signal energy close to the boundary-layer edge during this evolution. The structure angle of the disturbances also undergoes subtle changes as the wavepacket develops prior to breakdown. Experiments are also performed at high-enthalpy ($h_{0}\approx 12~\text{MJ}~\text{kg}^{-1}$) conditions in the laminar regime, and the visualization technique is shown to be capable of resolving wavepacket propagation speeds and frequencies at such conditions. The visualizations reveal a somewhat different wall-normal distribution to the low-enthalpy case, with the disturbance energy concentrated much more towards the wall. This is attributed to the highly cooled nature of the wall at high enthalpy.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, P. & Hornung, H. G. 1997 Enthalpy effects on hypervelocity boundary-layer transition: ground test and flight data. J. Spacecr. Rockets 34 (5), 614620.Google Scholar
Bertolotti, F. P. 1998 The influence of rotational and vibrational energy relaxation on boundary-layer stability. J. Fluid Mech. 372, 93118.CrossRefGoogle Scholar
Bitter, N. P. & Shepherd, J. E. 2015 Stability of highly cooled hypervelocity boundary layers. J. Fluid Mech. 778, 586620.CrossRefGoogle Scholar
Bountin, D. A., Shiplyuk, A. N. & Maslov, A. A. 2008 Evolution of nonlinear processes in a hypersonic boundary layer on a sharp cone. J. Fluid Mech. 611, 427442.CrossRefGoogle Scholar
Casper, K. M., Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M.2013a High-speed schlieren imaging of disturbances in a transitional hypersonic boundary layer. AIAA Paper 2013-0376.Google Scholar
Casper, K. M., Beresh, S. J. & Schneider, S. P. 2014 Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer. J. Fluid Mech. 756, 10581091.Google Scholar
Casper, K. M., Beresh, S. J., Wagnild, R. M., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M.2013b Simultaneous pressure measurements and high-speed schlieren imaging of disturbances in a transitional hypersonic boundary layer. AIAA Paper 2013-2739.CrossRefGoogle Scholar
Clarke, J. F. & Mcchesney, M. 1964 The Dynamics of Real Gases. Butterworths.Google Scholar
Demetriades, A.1974 Hypersonic viscous flow over a slender cone, part iii: laminar instability and transition. AIAA Paper 74-535.Google Scholar
Demetriades, A.1977 Laminar boundary layer stability measurements at Mach 7 including wall temperature effects. Tech. Rep. AFOSR-TR-77-1311.Google Scholar
Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2003 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J. Fluid Mech. 479, 99124.Google Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.CrossRefGoogle Scholar
Fedorov, A. V., Kozlov, V. F., Shiplyuk, A. N., Maslov, A. A. & Malmuth, N. D. 2006 Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44 (8), 18661871.CrossRefGoogle Scholar
Fedorov, A. V., Malmuth, N. D., Rasheed, A. & Hornung, H. G. 2001 Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39 (4), 605610.Google Scholar
Fischer, M. C. & Wagner, R. D. 1972 Transition and hot-wire measurements in hypersonic helium flow. AIAA J. 10 (10), 13261332.Google Scholar
Fischer, M. C. & Weinstein, L. M. 1972 Cone transitional boundary-layer structure at Me = 14. AIAA J. 10 (5), 699701.Google Scholar
Fujii, K. 2006 Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. J. Spacecr. Rockets 43 (4), 731738.CrossRefGoogle Scholar
Gerhold, T., Friedrich, O., Evans, J. & Galle, M.1997 Calculation of complex three-dimensional configurations employing the DLR TAU code. AIAA Paper 97-0167.Google Scholar
Germain, P. D. & Hornung, H. G. 1997 Transition on a slender cone in hypervelocity flow. Exp. Fluids 22, 183190.CrossRefGoogle Scholar
Grossir, G., Masutti, D. & Chazot, O.2015 Flow characterization and boundary layer transition studies in VKI hypersonic facilities. AIAA Paper 2015-0578.Google Scholar
Grossir, G., Pinna, F., Bonucci, G., Regert, T., Rambaud, P. & Chazot, O.2014 Hypersonic boundary layer transition on a 7 degree half-angle cone at Mach 10. AIAA Paper 2014-2779.Google Scholar
Hannemann, K.2003 High enthalpy flows in the HEG shock tunnel: experiment and numerical rebuilding. AIAA Paper 2003-0978.Google Scholar
He, Y. & Morgan, R. 1994 Transition of compressible high enthalpy boundary layer over a flat plate. Aeronaut J. 98, 2534.Google Scholar
Hofferth, J. W., Humble, R. A., Floryan, D. C. & Saric, W. S.2013 High-bandwidth optical measurements of the second-mode instability in a Mach 6 quiet tunnel. AIAA Paper 2013-0378.Google Scholar
Johnson, H. B., Seipp, T. G. & Candler, G. V. 1998 Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10 (10), 26762685.Google Scholar
Kendall, J. M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13 (3), 290299.CrossRefGoogle Scholar
Kimmel, R. L., Demetriades, A. & Donaldson, J. C. 1996 Space-time correlation measurements in a hypersonic transitional boundary layer. AIAA J. 34 (12), 24842489.CrossRefGoogle Scholar
Lau, K. Y. 2008 Hypersonic boundary-layer transition: application to high-speed vehicle design. J. Spacecr. Rockets 45 (2), 176183.Google Scholar
Laurence, S. J., Karl, S., Martinez Schramm, J. & Hannemann, K. 2013 Transient fluid combustion phenomena in a model scramjet. J. Fluid Mech. 722, 85120.CrossRefGoogle Scholar
Laurence, S. J., Wagner, A. & Hannemann, K. 2014 Schlieren-based techniques for investigating instability and transition in a hypersonic boundary layer. Exp. Fluids 55, 1782.Google Scholar
Laurence, S. J., Wagner, A., Hannemann, K., Wartemann, V., Lüdeke, H., Tanno, H. & Itoh, K. 2012 Time-resolved visualization of instability waves in a hypersonic boundary layer. AIAA J. 50 (1), 243246.Google Scholar
Linn, J. & Kloker, M. J. 2009 Investigation of thermal nonequilibrium on hypersonic boundary-layer transition by dns. In Seventh IUTAM Symposium on Laminar-Turbulent Transition, Vol. 18, pp. 521524. IUTAM Bookseries.Google Scholar
Mack, L. M. 1975 Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13 (3), 278289.Google Scholar
Malik, M. R. & Anderson, E. C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids A 3 (5), 803821.Google Scholar
Mangler, W. 1948 Zusammenhang zwischen ebenen und rotationssymmetrischen Grenzschichten in kompressiblen Flüssigkeiten. Z. Angew. Math. Mech. 28 (4), 97103.Google Scholar
Marxen, O., Iaccarino, G. & Magin, T. E. 2014 Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry. J. Fluid Mech. 755, 3549.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2013 Differential interferometric measurement of instability in a hypervelocity boundary layer. AIAA J. 51 (3), 750754.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2014 Free-stream density perturbations in a reflected-shock tunnel. Exp. Fluids 55 (2), 16651668.Google Scholar
Parziale, N. J., Shepherd, J. E. & Hornung, H. G. 2015 Observations of hypervelocity boundary-layer instability. J. Fluid Mech. 781, 87112.CrossRefGoogle Scholar
Potter, J. L. & Whitfield, J. D.1965 Boundary-layer transition under hypersonic conditions. AGARDograph No. 97, Part III.Google Scholar
Pruett, C. D. & Zang, T. A.1992 Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layers. AIAA Paper 1992-742.Google Scholar
Rasheed, A., Hornung, H. G., Fedorov, A. V. & Malmuth, N. D. 2002 Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA J. 40 (3), 481489.Google Scholar
Reshotko, E. 1976 Boundary-layer stability and transition. Annu. Rev. Fluid Mech. 8, 311349.CrossRefGoogle Scholar
Roediger, T., Knauss, H., Estorf, M., Schneider, S. & Smorodsky, B. V. 2009 Hypersonic instability waves measured using fast-response heat-flux gauges. J. Spacecr. Rockets 46 (2), 266273.CrossRefGoogle Scholar
Salemi, L., Fasel, H. F., Wernz, S. H. & Marquart, E.2014 Numerical investigation of wavepackets in a hypersonic high-enthalpy boundary layer on a 5-deg. sharp cone. AIAA Paper 2014-2775.Google Scholar
Salemi, L., Fasel, H. F., Wernz, S. H. & Marquart, E.2015 Numerical investigation of nonlinear wave-packets in a hypersonic high-enthalpy boundary-layer on a 5 deg. sharp cone. AIAA Paper 2015-2318.Google Scholar
Schneider, S. P. 2001 Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets 38 (3), 323333.Google Scholar
Sivasubramanian, J. & Fasel, H. F. 2014 Numerical investigation of the development of three-dimensional wavepackets in a sharp cone boundary layer at Mach 6. J. Fluid Mech. 756, 600649.CrossRefGoogle Scholar
Sivasubramanian, J. & Fasel, H. F. 2015 Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown. J. Fluid Mech. 768, 175218.CrossRefGoogle Scholar
Smith, L. G.1994 Pulsed-laser schlieren visualization of hypersonic boundary-layer instability waves. AIAA Paper 94-2639.Google Scholar
Stetson, K. F. & Kimmel, R. L.1992 On hypersonic boundary-layer stability. AIAA Paper 92-0737.CrossRefGoogle Scholar
Stetson, K. F. & Kimmel, R. L.1993 On the breakdown of a hypersonic laminar boundary layer. AIAA Paper 93-0896.Google Scholar
Stetson, K. F., Thompson, E. R., DOnaldson, J. C. & Siler, L. G.1983 Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone. AIAA Paper 83-1761.Google Scholar
VanDercreek, C. P., Smith, M. S. & Yu, K. H.2010 Focused schlieren and deflectometry at AEDC Hypervelocity Wind Tunnel No. 9. AIAA Paper 2010-4209.CrossRefGoogle Scholar
Wagner, A., Hannemann, K. & Kuhn, M. 2013a Experimental investigation of hypersonic boundary-layer stabilization on a cone by means of ultrasonically absorptive carbon-carbon material. Exp. Fluids 54, 110.CrossRefGoogle Scholar
Wagner, A., Hannemann, K. & Kuhn, M. 2014 Ultrasonic absorption characteristics of porous carbon-carbon ceramics with random microstructure for passive hypersonic boundary layer transition control. Exp. Fluids 55 (1750).CrossRefGoogle Scholar
Wagner, A., Hannemann, K., Wartemann, V. & Giese, T.2013b Hypersonic boundary-layer stabilization by means of ultrasonically absorptive carbon-carbon material, part 1: experimental results. AIAA Paper 2013-270.Google Scholar
White, F. M. 1991 Viscous Fluid Flow. McGraw-Hill.Google Scholar