Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T16:10:43.025Z Has data issue: false hasContentIssue false

Evolution of truncated and bent gravity wave solitons: the Mach expansion problem

Published online by Cambridge University Press:  29 December 2020

Samuel Ryskamp
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO80309, USA
Michelle D. Maiden
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO80309, USA
Gino Biondini
Affiliation:
Department of Mathematics, State University of New York, Buffalo, NY14260-2900, USA
Mark A. Hoefer*
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO80309, USA
*
Email address for correspondence: hoefer@colorado.edu

Abstract

The dynamics of initially truncated and bent line solitons for the Kadomtsev–Petviashvili (KPII) equation modelling internal and surface gravity waves is analysed using modulation theory. In contrast to previous studies on obliquely interacting solitons that develop from acute incidence angles, this work focuses on initial value problems for the obtuse incidence of two or three partial line solitons, which propagate away from one another. Despite counterpropagation, significant residual soliton interactions are observed with novel physical consequences. The initial value problem for a truncated line soliton – describing the emergence of a quasi-one-dimensional soliton from a wide channel – is shown to be related to the interaction of oblique solitons. Analytical descriptions for the development of weak and strong interactions are obtained in terms of interacting simple wave solutions of modulation equations for the local soliton amplitude and slope. In the weak interaction case, the long-time evolution of truncated and large obtuse angle solitons exhibits a decaying, parabolic wave profile with temporally increasing focal length that asymptotes to a cylindrical Korteweg–de Vries soliton. In contrast, the strong interaction case of slightly obtuse interacting solitons evolves into a steady, one-dimensional line soliton with amplitude reduced by an amount proportional to the incidence slope. This strong interaction is identified with the ‘Mach expansion’ of a soliton with an expansive corner, contrasting with the well-known Mach reflection of a soliton with a compressive corner. Interestingly, the critical angles for Mach expansion and reflection are the same. Numerical simulations of the KPII equation quantitatively support the analytical findings.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ablowitz, M. J. & Baldwin, D. E. 2012 Nonlinear shallow ocean-wave soliton interactions on flat beaches. Phys. Rev. E 86 (3), 036305.CrossRefGoogle ScholarPubMed
Ablowitz, M. J., Biondini, G. & Wang, Q. 2017 Whitham modulation theory for the Kadomtsev–Petviashvili equation. Proc. R. Soc. Lond. A 473 (2204), 20160695.Google ScholarPubMed
Ablowitz, M. J. & Clarkson, P. A. 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press.CrossRefGoogle Scholar
Ablowitz, M. J., Demirci, A. & Ma, Y.-P. 2016 Dispersive shock waves in the Kadomtsev–Petviashvili and two dimensional Benjamin–Ono equations. Physica D 333, 8498.CrossRefGoogle Scholar
Ablowitz, M. J. & Segur, H. 1979 On the evolution of packets of water waves. J. Fluid Mech. 92 (04), 691715.CrossRefGoogle Scholar
Ablowitz, M. J. & Villarroel, J. 1991 On the Kadomtsev–Petviashvili Equation and Associated Constraints. Stud. Appl. Maths 85 (3), 195213.CrossRefGoogle Scholar
Biondini, G. 2007 Line soliton interactions of the Kadomtsev–Petviashvili equation. Phys. Rev. Lett. 99 (6), 064103.CrossRefGoogle ScholarPubMed
Biondini, G., Hoefer, M. A. & Moro, A. 2020 Integrability, exact reductions and special solutions of the KP–Whitham equations. Nonlinearity 33, 41144132.CrossRefGoogle Scholar
Biondini, G. & Kodama, Y. 2003 On a family of solutions of the Kadomtsev-Petviashvili equation which also satisfy the Toda lattice hierarchy. J. Phys. A 36 (42), 1051910536.CrossRefGoogle Scholar
Biondini, G., Maruno, K.-I., Oikawa, M. & Tsuji, H. 2009 Soliton interactions of the Kadomtsev–Petviashvili equation and generation of large-amplitude water waves. Stud. Appl. Maths 122 (4), 377394.CrossRefGoogle Scholar
Biondini, G. & Trogdon, T. 2017 Gibbs phenomenon for dispersive PDEs on the line. SIAM J. Appl. Maths 77 (3), 813837.CrossRefGoogle Scholar
Chakravarty, S. & Kodama, Y. 2009 Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Maths 123 (1), 83151.CrossRefGoogle Scholar
Chakravarty, S., McDowell, T. & Osborne, M. 2017 Numerical studies of the KP line-solitons. Commun. Nonlinear Sci. Numer. Simul. 44, 3751.CrossRefGoogle Scholar
Cornish, V. 1910 Waves of the Sea and Other Water Waves. T. Fisher Unwin.Google Scholar
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Springer.Google Scholar
Funakoshi, M. 1980 Reflection of obliquely incident solitary waves. J. Phys. Soc. Japan 49 (6), 23712379.CrossRefGoogle Scholar
Gilmore, F. R., Plesset, M. S. & Crossley, H. E. 1950 The analogy between hydraulic jumps in liquids and shock waves in gases. J. Appl. Phys. 21 (3), 243249.CrossRefGoogle Scholar
Grava, T., Klein, C. & Pitton, G. 2018 Numerical study of the Kadomtsev–Petviashvili equation and dispersive shock waves. Proc. R. Soc. Lond. A 474 (2210), 20170458.Google Scholar
Grimshaw, R. 1981 Evolution equations for long, nonlinear internal waves in stratified shear flows. Stud. Appl. Maths 65 (2), 159188.CrossRefGoogle Scholar
Jackson, C. R. 2004 An atlas of internal solitary-like waves and their properties. Tech. Rep. Global Ocean Associates, 2nd edn.Google Scholar
Johnson, R. S. 1997 A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press.CrossRefGoogle Scholar
Kadomtsev, B. B. & Petviashvili, V. I. 1970 On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15 (6), 753756.Google Scholar
Kao, C.-Y. & Kodama, Y. 2012 Numerical study of the KP equation for non-periodic waves. Math. Comput. Simul. 82 (7), 11851218.CrossRefGoogle Scholar
Klein, C., Sparber, C. & Markowich, P. 2007 Numerical study of oscillatory regimes in the Kadomtsev–Petviashvili equation. J. Nonlinear Sci. 17 (5), 429470.CrossRefGoogle Scholar
Ko, K. & Kuehl, H. H. 1979 Cylindrical and spherical Korteweg-de Vries solitary waves. Phys. Fluids 22 (7), 13431348.CrossRefGoogle Scholar
Kodama, Y. 2004 Young diagrams and N-soliton solutions of the KP equation. J. Phys. A: Math. Gen. 37 (46), 1116911190.CrossRefGoogle Scholar
Kodama, Y. 2010 KP solitons in shallow water. J. Phys. A: Math. Gen. 43 (43), 434004.CrossRefGoogle Scholar
Kodama, Y., Oikawa, M. & Tsuji, H. 2009 Soliton solutions of the KP equation with V-shape initial waves. J. Phys. A: Math. Gen. 42 (31), 312001.CrossRefGoogle Scholar
Kodama, Y. & Yeh, H. 2016 The KP theory and Mach reflection. J. Fluid Mech. 800, 766786.CrossRefGoogle Scholar
Krehl, P. & van der Geest, M. 1991 The discovery of the Mach reflection effect and its demonstration in an auditorium. Shock Waves 1, 315.CrossRefGoogle Scholar
Lee, S.-J. & Grimshaw, R. H. J. 1990 Upstream advancing waves generated by three-dimensional moving disturbances. Phys. Fluids A 2 (2), 194201.CrossRefGoogle Scholar
Li, W., Yeh, H. & Kodama, Y. 2011 On the Mach reflection of a solitary wave: revisited. J. Fluid Mech. 672, 326357.CrossRefGoogle Scholar
Li, Y. & Sclavounos, P. D. 2002 Three-dimensional nonlinear solitary waves in shallow water generated by an advancing disturbance. J. Fluid Mech. 470, 383410.CrossRefGoogle Scholar
Mach, E. & Wosyka, J. 1875 Über einige mechanische Wirkungen des electrischen Funkens. Sitz. ber. Akad. Wiss. Wien 72, 4452.Google Scholar
Melville, W. K. 1980 On the Mach reflexion of a solitary wave. J. Fluid Mech. 98 (2), 285297.CrossRefGoogle Scholar
Miles, J. W. 1977 a Obliquely interacting solitary waves. J. Fluid Mech. 79 (01), 157169.CrossRefGoogle Scholar
Miles, J. W. 1977 b Resonantly interacting solitary waves. J. Fluid Mech. 79 (01), 171179.CrossRefGoogle Scholar
Nakamura, A & Chen, H.-H. 1981 Soliton solutions of the cylindrical KdV equation. J. Phys. Soc. Japan 50 (2), 711718.CrossRefGoogle Scholar
Neu, J. C. 2015 Singular Perturbation in the Physical Sciences. American Mathematical Society.CrossRefGoogle Scholar
Nash, J. D. & Moum, J. N. 2005 River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature 437, 400403.CrossRefGoogle ScholarPubMed
Pan, J., Jay, D. A. & Orton, P. M. 2007 Analyses of internal solitary waves generated at the Columbia River plume front using SAR imagery. J. Geophys. Res.: Oceans 112 (C7), C07014.Google Scholar
Perroud, P. H. 1957 The solitary wave reflection along a straight vertical wall at oblique incidence. Institute of Engineering Research. Wave Research Laboratory. Tech. Rep. 99. University of California, Berkeley.Google Scholar
Porubov, A. V., Tsuji, H., Lavrentov, I. V. & Oikawa, M. 2005 Formation of the rogue wave due to nonlinear two-dimensional waves interaction. Wave Motion 42, 202220.CrossRefGoogle Scholar
Russell, J. S. 1845 Report on Waves. pp. 360–361, Plate LIV. British Association for the Advancement of Science.Google Scholar
Smoller, J. 1994 Shock Waves and Reaction-Diffusion Equations. Springer.CrossRefGoogle Scholar
Tanaka, M. 1993 Mach reflection of a large-amplitude solitary wave. J. Fluid Mech. 248, 637661.CrossRefGoogle Scholar
Tsuji, H. & Oikawa, M. 2007 Oblique interaction of solitons in an extended Kadomtsev–Petviashvili equation. J. Phys. Soc. Japan 76 (8), 084401.CrossRefGoogle Scholar
Wang, C. & Pawlowicz, R. 2012 Oblique wave-wave interactions of nonlinear near-surface internal waves in the Strait of Georgia. J. Geophys. Res.: Oceans 117 (C6), C10021.Google Scholar
Wang, C. & Pawlowicz, R. 2017 Internal wave generation from tidal flow exiting a constricted opening. J. Geophys. Res.: Oceans 122 (1), 110125.CrossRefGoogle Scholar
Yuan, C., Grimshaw, R., Johnson, E. & Wang, Z. 2018 Topographic effect on oblique internal wave–wave interactions. J. Fluid Mech. 856, 3660.CrossRefGoogle Scholar