Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T23:56:57.444Z Has data issue: false hasContentIssue false

Dynamics of uncharged colloidal inclusions in polyelectrolyte hydrogels

Published online by Cambridge University Press:  14 January 2011

ALIASGHAR MOHAMMADI
Affiliation:
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
REGHAN J. HILL*
Affiliation:
Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 2B2, Canada
*
Email address for correspondence: reghan.hill@mcgill.ca

Abstract

We calculate the dynamics of an uncharged colloidal sphere embedded in a quenched polyelectrolyte hydrogel to (i) an oscillatory (optical and magnetic) force, as adopted in classical micro-rheology, and (ii) an oscillatory electric field, as adopted in electrical micro-rheology and electro-acoustics. The hydrogel is modelled as a linearly elastic porous medium with the charge fixed to the skeleton and saturated with a Newtonian electrolyte; and the colloidal inclusion is modelled as a rigid, impenetrable sphere. The dynamic micro-rheological susceptibility, defined as the ratio of the particle displacement to the strength of an applied oscillatory force, depends on the fixed-charge density and ionic strength and is bounded by the limits for incompressible and uncharged, compressible skeletons. Nevertheless, the influences of fixed charge and ionic strength vanish at frequencies above the reciprocal draining time, where the polymer and the electrolyte hydrodynamically couple as a single incompressible phase. Generally, the effects of fixed charge and ionic strength are small compared with, for example, the influences of polymer slip at the particle surface. The electrical susceptibility, defined as the ratio of the particle displacement to the strength of an applied oscillatory electric field, is directly influenced by charge at all frequencies, irrespective of skeleton compressibility. At low frequencies, polymer charge modulates the driving (electro-osmotic) and restoring (electrostatically enhanced elastic) forces, whereas charge has no influence on the restoring force at high frequencies where dilational strain is suppressed by hydrodynamic coupling with the electrolyte. In striking contrast to charged inclusions in uncharged hydrogels (Wang & Hill, J. Fluid Mech., vol. 640, 2009, pp. 357–400), the electrical susceptibility at high frequencies is independent of electrolyte concentration. Rather, the dynamics primarily reflect the elastic modulus, charge and hydrodynamic permeability, with a relatively weak dependence on particle size. Interestingly, the dynamic mobility in the zero-momentum reference frame, which is central to the electro-acoustic response, is qualitatively different from the dynamic mobility in the skeleton-fixed reference frame. Finally, we propose a phenomenological harmonic-oscillator model to address – in an approximate manner – the dynamics of charged particles in charged hydrogels. This shows that particle dynamics at low frequencies are dominated by particle charge, whereas high-frequency dynamics are dominated by hydrogel charge.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahualli, S., Delgado, A. V., Miklavcic, S. J. & White, L. R. 2007 Use of a cell model for the evaluation of the dynamic mobility of spherical silica suspensions. J. Colloid Interface Sci. 309, 342349.Google Scholar
Cowin, S. C. & Doty, S. B. 2007 Tissue Mechanics. Springer.Google Scholar
Desai, F. N., Hammad, H. R. & Hayes, K. F. 1993 Background electrolyte correction for electrokinetic sonic amplitude measurements. Langmuir 9, 28882894.CrossRefGoogle Scholar
Dukhin, A. S. & Goetz, P. J. 2001 New developments in acoustic and electroacoustic spectroscopy for characterizing concentrated dispersions. Colloids Surf. A: Physicochem. Engng Asp. 192 (1–3), 267306.CrossRefGoogle Scholar
Dukhin, A. S., Goetz, P. J., Wines, T. H. & Somasundaran, P. 2000 Acoustic and electroacoustic spectroscopy. Colloids Surf. A: Physicochem. Engng Asp. 173 (1–3), 127158.Google Scholar
English, A. E., Tanaka, T. & Edelman, E. R. 1997 Equilibrium and non-equilibrium phase transitions in copolymer polyelectrolyte hydrogels. J. Chem. Phys. 107 (5), 16451654.Google Scholar
Epstein, P. S. & Carhart, R. R. 1953 The absorption of sound in suspensions and emulsions. Part I. Water fog in air. J. Acoust. Soc. Am. 25 (3), 553565.CrossRefGoogle Scholar
Fu, H. C., Shenoy, V. B. & Powers, T. R. 2008 Role of slip between a probe particle and a gel in microrheology. Phys. Rev. E 78 (6), 061503.Google Scholar
Gardel, M. L., Valentine, M. T. & Weitz, D. A. 2005 Microrheology. In Microscale Diagnostics Techniques (ed. Breuer, K.), chapter 1, pp. 150. Springer.Google Scholar
de Gennes, P. G. 1976 Dynamics of entangled polymer solutions. Part I. The Rouse model. Marcromolecules 9, 587.Google Scholar
Gu, W. Y., Lai, W. M. & Mow, V. C. 1998 A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J. Biomech. Engng 120, 169180.CrossRefGoogle ScholarPubMed
Hill, R. J. & Ostoja-Starzewski, M. 2008 Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium. Phys. Rev. E 77, 011404.CrossRefGoogle Scholar
Hunter, R. J. 1998 Recent developments in the electroacoustic characterisation of colloidal suspensions and emulsions. Colloids Surf. A: Physicochem. Engng Asp. 141 (1), 3765.Google Scholar
Johnson, D. L. 1982 Elastodynamics of gels. J. Chem. Phys. 77 (3), 15311539.Google Scholar
Klein, M., Andersson, M., Axner, O. & Fällman, E. 2007 Dual-trap technique for reduction of low-frequency noise in force measuring optical tweezers. Appl. Opt. 46 (3), 405.Google Scholar
Kollmannsberger, P. & Fabry, B. 2007 High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum. 78, 114301.Google Scholar
Lai, W. M., Hou, J. S. & Mow, V. C. 1991 A triphasic theory for the swelling and deformation behaviors of articular cartilage. J. Biomech. Engng 113 (3), 245258.CrossRefGoogle ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics, 2nd edn. Pergamon.Google Scholar
Levine, A. J. & Lubensky, T. C. 2000 One- and two-particle microrheology. Phys. Rev. Lett. 85 (8), 17741777.CrossRefGoogle ScholarPubMed
Levine, A. J. & Lubensky, T. C. 2001 Response function of a sphere in a viscoelastic two-fluid medium. Phys. Rev. E 63 (4), 041510.Google Scholar
Li, H., Chen, J. & Lam, K. 2006 A transient simulation to predict the kinetic behavior of hydrogels responsive to electric stimulus. Biomacromolecules 7 (6), 19511959.CrossRefGoogle ScholarPubMed
Li, H., Chen, J. & Lam, K. Y. 2004 a Multiphysical modeling and meshless simulation of electric-sensitive hydrogels. J. Polym. Sci. Part B: Polym. Phys. 42 (8), 15141531.Google Scholar
Li, H., Yuan, Z., Lam, K. Y., Lee, H. P., Chen, J., Hanes, J. & Fu, J. 2004 b Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field. Biosens. Bioelectron. 19 (9), 10971107.Google Scholar
MacKintosh, F. C. & Levine, A. J. 2008 Nonequilibrium mechanics and dynamics of motor-activated gels. Phys. Rev. Lett. 100 (1), 018104.CrossRefGoogle ScholarPubMed
MacKintosh, F. C. & Schmidt, C. F. 1999 Microrheology. Curr. Opin. Colloid Interface Sci. 4, 300307.Google Scholar
Mason, T. G. & Weitz, D. A. 1995 Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74 (7), 12501253.Google Scholar
Mizuno, D., Kimura, Y. & Hayakawa, R. 2001 Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys. Rev. Lett. 87 (8), 088104.CrossRefGoogle Scholar
Mizuno, D., Kimura, Y. & Hayakawa, R. 2004 Electrophoretic microrheology of a dilute lamellar phase: relaxation mechanisms in frequency dependent mobility of nanometer-sized particles between soft membranes. Phys. Rev. E 70, 011509.Google Scholar
Mohammadi, A. & Hill, R. J. 2010 Steady electrical and micro-rheological response functions for uncharged colloidal inclusions in polyelectrolyte hydrogels. Proc. R. Soc. A 466 (2113), 213235.Google Scholar
Nägele, G. 2003 Viscoelasticity and diffusional properties of colloidal model dispersions. J. Phys. Condens. Matter 15 (1), S407S414.Google Scholar
Nugent-Glandorf, L. & Perkins, T. T. 2004 Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection. Opt. Lett. 29 (22), 2611.CrossRefGoogle Scholar
O'Brien, R. W. 1982 The response of a colloidal suspension to an alternating electric field. Adv. Colloid Interface Sci. 16 (1), 281320.Google Scholar
O'Brien, R. W. 1988 Electro-acoustic effects in a dilute suspension of spherical particles. J. Fluid Mech. 190, 7186.Google Scholar
O'Brien, R. W. 1990 Electroacoustic equations for a colloidal suspension. J. Fluid Mech. 212, 8193.CrossRefGoogle Scholar
O'Brien, R. W. & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 16071626.CrossRefGoogle Scholar
Pride, S. 1994 Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B 50 (21), 1567815696.Google Scholar
Russel, W. B., Schowalter, W. R. & Saville, D. A. 1989 Colloidal Dispersions. Cambridge University Press.CrossRefGoogle Scholar
Schnurr, B., Gittes, F., MacKintosh, F. C. & Schmidt, C. F. 1997 Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules 30, 77817792.CrossRefGoogle Scholar
Squires, T. M. & Mason, T. G. 2010 Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413438.Google Scholar
Tanaka, T., Hocker, L. O. & Benedek, G. B. 1973 Spectrum of light scattered from a viscoelastic gel. J. Chem. Phys. 59 (9), 51605183.Google Scholar
Tanaka, T., Ishiwata, S. & Ishimoto, C. 1977 Critical behavior of density fluctuations in gels. Phys. Rev. Lett. 38 (14), 771774.Google Scholar
Temkin, S. 2005 Suspension Acoustics: An Introduction to the Physics of Suspensions, 1st edn. Cambridge University Press.Google Scholar
Waigh, T. A. 2005 Microrheology of complex fluids. Rep. Prog. Phys. 68, 685742.CrossRefGoogle Scholar
Wang, M. & Hill, R. J. 2008 Electric-field-induced displacement of a charged spherical colloid embedded in a Brinkman medium. Soft Matter 4, 10481058.Google Scholar
Wang, M. & Hill, R. J. 2009 Dynamic electric-field-induced response of charged spherical colloids in uncharged hydrogels. J. Fluid Mech. 640, 357400.Google Scholar
Xu, K., Forest, M. G. & Klapper, I. 2007 On the correspondence between creeping flows of viscous and viscoelastic fluids. J. Non-Newton. Fluid Mech. 145 (2–3), 150172.Google Scholar
Yariv, E. 2006 ‘Force-free’ electrophoresis? Phys. Fluids 18 (3), 031702.Google Scholar
Zwanzig, R. & Bixon, M. 1970 Hydrodynamic theory of the velocity correlation function. Phys. Rev. A 2 (5), 20052012.Google Scholar