Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T15:20:21.191Z Has data issue: false hasContentIssue false

Dynamics of a surface tension driven colloidal motor based on an active Janus particle encapsulated in a liquid drop

Published online by Cambridge University Press:  02 March 2023

Subramaniam Chembai Ganesh
Affiliation:
Benjamin Levich Institute and Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031, USA
Joel Koplik
Affiliation:
Benjamin Levich Institute and Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
Jeffrey F. Morris
Affiliation:
Benjamin Levich Institute and Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031, USA
Charles Maldarelli*
Affiliation:
Benjamin Levich Institute and Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031, USA
*
Email address for correspondence: cmaldarelli@ccny.cuny.edu

Abstract

A colloidal motor driven by surface tension forces is theoretically designed by encapsulating an active Janus particle in a liquid drop which is immiscible in the suspending medium. The Janus particle produces an asymmetric flux of a solute species which induces surface tension gradients along the liquid–liquid interface between the drop and the surrounding fluid. The resulting Marangoni forces at the interface propel the compound drop/Janus particle system. The propulsion speeds of the motor are evaluated for a range of relative sizes and positions of the drop and the particle and across a range of transport properties of the drop and the suspending medium. It is demonstrated that the proposed design can produce higher propulsion velocities than the traditional Janus-particle-based colloidal motors propelled by neutral diffusiophoresis.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelmohsen, L.K.E.A., Peng, F., Tu, Y. & Wilson, D.A. 2014 Micro-and nano-motors for biomedical applications. J. Mater. Chem. B 2 (17), 23952408.CrossRefGoogle ScholarPubMed
Alvarez, N.J., Walker, L.M. & Anna, S.L. 2010 A microtensiometer to probe the effect of radius of curvature on surfactant transport to a spherical interface. Langmuir 26 (16), 1331013319.CrossRefGoogle ScholarPubMed
Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.CrossRefGoogle Scholar
Anderson, J.L., Lowell, M.E. & Prieve, D.C. 1982 Motion of a particle generated by chemical gradients part 1. Non-electrolytes. J. Fluid Mech. 117, 107121.CrossRefGoogle Scholar
Berg, J.C. 2010 An Introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific.Google Scholar
Chaithanya, K.V.S. & Thampi, S.P. 2019 Dynamics and stability of a concentric compound particle–a theoretical study. Soft Matt. 15 (38), 76057615.Google Scholar
Chaithanya, K.V.S. & Thampi, S.P. 2020 Deformation dynamics of an active compound particle in an imposed shear flow–a theoretical study. J. Phys. D: Appl. Phys. 53 (31), 314001.Google Scholar
Chen, J. & Stebe, K.J. 1997 Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech. 340, 3559.CrossRefGoogle Scholar
Córdova-Figueroa, U.M., Brady, J.F. & Shklyaev, S. 2013 Osmotic propulsion of colloidal particles via constant surface flux. Soft Matt. 9 (28), 6382.CrossRefGoogle Scholar
Danov, K.D., Dimova, R. & Pouligny, B. 2000 Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12 (11), 27112722.CrossRefGoogle Scholar
De Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827.CrossRefGoogle Scholar
Dietrich, K., Jaensson, N., Buttinoni, I., Volpe, G. & Isa, L. 2020 Microscale marangoni surfers. Phys. Rev. Lett. 125 (9), 098001.CrossRefGoogle ScholarPubMed
Domínguez, A., Malgaretti, P., Popescu, M.N. & Dietrich, S. 2016 Effective interaction between active colloids and fluid interfaces induced by marangoni flows. Phys. Rev. Lett. 116 (7), 078301.CrossRefGoogle ScholarPubMed
Ebbens, S.J. & Howse, J.R. 2010 In pursuit of propulsion at the nanoscale. Soft Matt. 6 (4), 726738.CrossRefGoogle Scholar
Ender, H., Froin, A.-K., Rehage, H. & Kierfeld, J. 2021 Surfactant-loaded capsules as marangoni microswimmers at the air–water interface: symmetry breaking and spontaneous propulsion by surfactant diffusion and advection. Eur. Phys. J. E 44 (2), 122.CrossRefGoogle ScholarPubMed
Gibbs, J.G. & Zhao, Y.-P. 2009 Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94 (16), 163104.CrossRefGoogle Scholar
Gidituri, H., Panchagnula, M.V. & Pototsky, A. 2019 Dynamics of a fully wetted marangoni surfer at the fluid–fluid interface. Soft Matt. 15 (10), 22842291.CrossRefGoogle ScholarPubMed
Golestanian, R., Liverpool, T.B. & Ajdari, A. 2005 Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94 (22), 220801.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 2012 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer.Google Scholar
Heisler, E., Suematsu, N.J., Awazu, A. & Nishimori, H. 2012 Swarming of self-propelled camphor boats. Phys. Rev. E 85 (5), 055201.CrossRefGoogle ScholarPubMed
Howse, J.R., Jones, R.A.L., Ryan, A.J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys Rev. Lett. 99 (4), 048102.CrossRefGoogle ScholarPubMed
Izri, Z., Van Der Linden, M.N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion. Phys. Rev. Lett. 113 (24), 248302.CrossRefGoogle ScholarPubMed
Johnson, R.E. & Sadhal, S.S. 1985 Fluid mechanics of compound multiphase drops and bubbles. Annu. Rev. Fluid Mech. 17 (1), 289320.CrossRefGoogle Scholar
Kang, D., Nadim, A. & Chugunova, M. 2016 Dynamics and equilibria of thin viscous coating films on a rotating sphere. J. Fluid Mech. 791, 495518.CrossRefGoogle Scholar
Kang, D., Nadim, A. & Chugunova, M. 2017 Marangoni effects on a thin liquid film coating a sphere with axial or radial thermal gradients. Phys. Fluids 29 (7), 072106.CrossRefGoogle Scholar
Kang, S.J., Sur, S., Rothstein, J.P. & Masoud, H. 2020 Forward, reverse, and no motion of marangoni surfers under confinement. Phys. Rev. Fluids 5 (8), 084004.CrossRefGoogle Scholar
Kim, H.S. & Subramanian, R.S. 1989 Thermocapillary migration of a droplet with insoluble surfactant: I. Surfactant cap. J. Colloid Interface Sci. 127 (2), 417428.CrossRefGoogle Scholar
Kitahata, H., Hiromatsu, S.-I., Doi, Y., Nakata, S. & Islam, M.R. 2004 Self-motion of a camphor disk coupled with convection. Phys. Chem. Chem. Phys. 6 (9), 24092414.CrossRefGoogle Scholar
Kree, R., Rueckert, L. & Zippelius, A. 2021 Dynamics of a droplet driven by an internal active device. Phys. Rev. Fluids 6 (3), 034201.CrossRefGoogle Scholar
Kree, R. & Zippelius, A. 2022 Mobilities of a drop and an encapsulated squirmer. Eur. Phys. J. E 45 (2), 111.CrossRefGoogle Scholar
Lauga, E. & Davis, A.M.J. 2012 Viscous marangoni propulsion. J. Fluid Mech. 705, 120133.CrossRefGoogle Scholar
Leal, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, vol. 7. Cambridge University Press.CrossRefGoogle Scholar
Manikantan, H. & Squires, T.M. 2020 Surfactant dynamics: hidden variables controlling fluid flows. J. Fluid Mech. 892, 11115.CrossRefGoogle ScholarPubMed
Masoud, H. & Stone, H.A. 2014 A reciprocal theorem for marangoni propulsion. J. Fluid Mech. 741, R4.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.CrossRefGoogle Scholar
Michelin, S. & Lauga, E. 2015 Autophoretic locomotion from geometric asymmetry. Eur. Phys. J. E 38 (2), 116.CrossRefGoogle ScholarPubMed
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.CrossRefGoogle Scholar
Moon, P. & Spencer, D.E. 2012 Field Theory Handbook: Including Coordinate Systems, Differential Equations and their Solutions. Springer.Google Scholar
Morton, D.S., Subramanian, R.S. & Balasubramaniam, R. 1990 The migration of a compound drop due to thermocapillarity. Phys. Fluids A: Fluid Dyn. 2 (12), 21192133.CrossRefGoogle Scholar
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2016 Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids 28 (5), 053107.CrossRefGoogle Scholar
Nagayama, M., Nakata, S., Doi, Y. & Hayashima, Y. 2004 A theoretical and experimental study on the unidirectional motion of a camphor disk. Phys. D: Nonlinear Phenom. 194 (3–4), 151165.CrossRefGoogle Scholar
Nakata, S., Iguchi, Y., Ose, S., Kuboyama, M., Ishii, T. & Yoshikawa, K. 1997 Self-rotation of a camphor scraping on water: new insight into the old problem. Langmuir 13 (16), 44544458.CrossRefGoogle Scholar
Pawar, A.B. & Kretzschmar, I. 2010 Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31 (2), 150168.CrossRefGoogle ScholarPubMed
Peng, M., Duignan, T.T., Zhao, X.S. & Nguyen, A.V. 2020 Surface potential explained: a surfactant adsorption model incorporating realistic layer thickness. J. Phys. Chem. B 124 (15), 31953205.CrossRefGoogle ScholarPubMed
Popescu, M.N., Dietrich, S. & Oshanin, G. 2009 Confinement effects on diffusiophoretic self-propellers. J. Chem. Phys. 130 (19), 194702.CrossRefGoogle ScholarPubMed
Popescu, M.N., Uspal, W.E. & Dietrich, S. 2016 Self-diffusiophoresis of chemically active colloids. Eur. Phys. J. Spec. Top. 225 (11), 21892206.CrossRefGoogle Scholar
Popescu, M.N., Uspal, W.E., Dominguez, A. & Dietrich, S. 2018 Effective interactions between chemically active colloids and interfaces. Acc. Chem. Res. 51 (12), 29912997.CrossRefGoogle ScholarPubMed
Purcell, E.M. 1977 Life at low reynolds number. Am. J. Phys. 45 (1), 311.CrossRefGoogle Scholar
Sadhal, S.S. & Oguz, H.N. 1985 Stokes flow past compound multiphase drops: the case of completely engulfed drops/bubbles. J. Fluid Mech. 160, 511529.CrossRefGoogle Scholar
Schnitzer, O. & Yariv, E. 2015 Osmotic self-propulsion of slender particles. Phys. Fluids 27 (3), 031701.CrossRefGoogle Scholar
Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2013 Diffusiophoretic self-propulsion of colloids driven by a surface reaction: the sub-micron particle regime for exponential and van der waals interactions. Phys. Fluids 25 (1), 012001.CrossRefGoogle Scholar
Shklyaev, S., Brady, J.F. & Córdova-Figueroa, U.M. 2014 Non-spherical osmotic motor: chemical sailing. J. Fluid Mech. 748, 488520.CrossRefGoogle Scholar
Solovev, A.A., Xi, W., Gracias, D.H., Harazim, S.M., Deneke, C., Sanchez, S. & Schmidt, O.G. 2012 Self-propelled nanotools. ACS Nano 6 (2), 17511756.CrossRefGoogle ScholarPubMed
Sprenger, A.R., Shaik, V.A., Ardekani, A.M., Lisicki, M., Mathijssen, A.J.T.M., Guzmán-Lastra, F., Löwen, H., Menzel, A.M. & Daddi-Moussa-Ider, A. 2020 Towards an analytical description of active microswimmers in clean and in surfactant-covered drops. Eur. Phys. J. E 43 (9), 118.CrossRefGoogle ScholarPubMed
Strutt, R.J. 1890 IV. Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc. R. Soc. Lond. 47 (286-291), 364367.Google Scholar
Subramanian, R.S., Balasubramaniam, R. & Clark, N. 2002 Motion of bubbles and drops in reduced gravity. Appl. Mech. Rev. 55 (3), B56B57.CrossRefGoogle Scholar
Sundararajan, S., Lammert, P.E., Zudans, A.W., Crespi, V.H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.CrossRefGoogle ScholarPubMed
Sur, S., Masoud, H. & Rothstein, J.P. 2019 Translational and rotational motion of disk-shaped marangoni surfers. Phys. Fluids 31 (10), 102101.CrossRefGoogle Scholar
Tsemakh, D., Lavrenteva, O.M. & Nir, A. 2004 On the locomotion of a drop, induced by the internal secretion of surfactant. Intl J. Multiphase Flow 30 (11), 13371367.CrossRefGoogle Scholar
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2016 Guiding catalytically active particles with chemically patterned surfaces. Phys. Rev. Lett. 117 (4), 048002.CrossRefGoogle ScholarPubMed
Wang, J. & Gao, W. 2012 Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6 (7), 57455751.CrossRefGoogle ScholarPubMed
Wang, Y., Hernandez, R.M., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A. & Mallouk, T.E. 2006 Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22 (25), 1045110456.CrossRefGoogle ScholarPubMed
Wang, Y., Mauri, R. & Acrivos, A. 1994 Thermocapillary migration of a bidisperse suspension of bubbles. J. Fluid Mech. 261, 4764.CrossRefGoogle Scholar
Wang, S. & Wu, N. 2014 Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30 (12), 34773486.CrossRefGoogle ScholarPubMed
Würger, A. 2014 Thermally driven marangoni surfers. J. Fluid Mech. 752, 589601.CrossRefGoogle Scholar
Yariv, E. 2016 Wall-induced self-diffusiophoresis of active isotropic colloids. Phys. Rev. Fluids 1 (3), 032101.CrossRefGoogle Scholar
Young, N.O., Goldstein, J.S. & Block, M.J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.CrossRefGoogle Scholar
Supplementary material: PDF

Chembai Ganesh et al. supplementary material

Chembai Ganesh et al. supplementary material

Download Chembai Ganesh et al. supplementary material(PDF)
PDF 103 KB