Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T03:12:28.969Z Has data issue: false hasContentIssue false

Dip-coating with a particulate suspension

Published online by Cambridge University Press:  23 April 2019

Sergio Palma
Affiliation:
Aix Marseille Université, CNRS, IUSTI, 13453, Marseille, France
Henri Lhuissier*
Affiliation:
Aix Marseille Université, CNRS, IUSTI, 13453, Marseille, France
*
Email address for correspondence: henri.lhuissier@univ-amu.fr

Abstract

The coating of a plate withdrawn from a bath of a suspension of non-Brownian, monodisperse and neutrally buoyant spherical particles suspended in a Newtonian liquid has been studied. Using laser profilometry, particle tracking and local sample weighing we have quantified the thickness $h$ and the particle content of the film for various particle diameters $d$ and volume fractions ($0.10\leqslant \unicode[STIX]{x1D719}\leqslant 0.50$). Three coating regimes have been observed as the withdrawal velocity is increased: (i) no particle entrainment ($h\lesssim d$), (ii) a monolayer of particles ($h\sim d$), and (iii) a thick film ($h\gtrsim d$), where the suspension behaves as an effective viscous fluid following the Landau–Levich–Derjaguin law. We discuss the boundaries between these regimes, as well as the evolution of the liquid and solid content of the coating over the whole range of withdrawal capillary number and volume fractions.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berteloot, G., Daerr, A., Lequeux, F. & Limat, L. 2013 Dip coating with colloids and evaporation. Chem. Eng. Process. 68, 6973.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.Google Scholar
Bonnoit, C., Bertrand, T., Clément, E. & Lindner, A. 2012 Accelerated drop detachment in granular suspensions. Phys. Fluids 24, 043304.Google Scholar
Brewer, D., Shibuta, T., Francis, L., Kumar, S. & Tsapatsis, M. 2011 Coating process regimes in particulate film production by forced-convection-assisted drag-out. Langmuir 27, 1166011670.Google Scholar
Buchanan, M., Molenaar, D., de Villiers, S. & Evans, R. M. L. 2007 Pattern formation in draining thin film suspensions. Langmuir 23, 37323736.Google Scholar
Château, J., Guazzelli, É. & Lhuissier, H. 2018 Pinch-off of a viscous suspension thread. J. Fluid Mech. 852, 178198.Google Scholar
Château, J. & Lhuissier, H. 2019 Breakup of a particulate suspension jet. Phys. Rev. Fluids 4, 012001.Google Scholar
Colosqui, C., Morris, J. & Stone, H. 2013 Hydrodynamically driven colloidal assembly in dip coating. Phys. Rev. Lett. 110, 188302.Google Scholar
Derjaguin, B. 1943 On the thickness of liquid layer adhering to walls of vessels after emptying and the theory of photo- and motion picture film coating. Dokl. Akad. Nauk SSSR 39, 1316.Google Scholar
Dimitrov, A. & Nagayama, K. 1996 Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12, 13031311.Google Scholar
Faustini, M., Louis, B., Albouy, P., Kuemmel, M. & Grosso, D. 2010 Preparation of sol-gel films by dip-coating in extreme conditions. J. Phys. Chem. C 114, 76377645.Google Scholar
Furbank, R. & Morris, J. 2004 An experimental study of particle effects on drop formation. Phys. Fluids 16, 17771790.Google Scholar
Gans, A., Dressaire, E., Colnet, B., Saingier, G., Bazant, M. & Sauret, A. 2019 Dip-coating of suspensions. Soft Matt. 15, 252261.Google Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.Google Scholar
Ghosh, M., Fan, F. & Stebe, K. 2007 Spontaneous pattern formation by dip coating of colloidal suspensions on homogeneous surfaces. Langmuir 23, 21802183.Google Scholar
Groenveld, P. 1970 High capillary number withdrawal from viscous Newtonian liquids by flat plates. Chem. Engng Sci. 25, 3340.Google Scholar
Guazzelli, É. & Pouliquen, O. 2018 Rheology of dense granular suspensions. J. Fluid Mech. 852, P1.Google Scholar
Jing, G., Bodiguel, H., Doumenc, F., Sultan, E. & Guerrier, B. 2010 Drying of colloidal suspensions and polymer solutions near the contact line: deposit thickness at low capillary number. Langmuir 26, 22882293.Google Scholar
Jung, Y. D. & Ahn, K. H. 2013 Prediction of coating thickness in the convective assembly process. Langmuir 29, 1576215769.Google Scholar
Kao, J. & Hosoi, E. 2012 Spinodal decomposition in particle-laden Landau–Levich flow. Phys. Fluids 24, 041701.Google Scholar
Kizito, J., Kamotani, S. & Ostrach, S. 1999 Experimental free coating flows at high capillary and Reynolds number. Exp. Fluids 27, 235243.Google Scholar
Kralchevsky, P. & Nagayama, K. 1994 Capillary forces between colloidal particles. Langmuir 10, 2336.Google Scholar
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.Google Scholar
Le Berre, M., Chen, Y. & Baigl, D. 2009 From convective assembly to Landau-Levich deposition of multilayered phospholipid films of controlled thickness. Langmuir 25, 25542557.Google Scholar
Lee, C. & Tallmadge, J. 1974 Meniscus shapes in withdrawal of flat sheets from liquid baths. Dynamic profile data at low capillary numbers. Ind. Engng Chem. Fundam. 13, 356360.Google Scholar
Maleki, M., Reyssat, M., Restagno, F., Quéré, D. & Clanet, C. 2011 Landau–Levich menisci. J. Colloid Interface Sci. 354, 359363.Google Scholar
Mathues, W., McIlroy, C., Harlen, O. G. & Clasen, C. 2015 Capillary breakup of suspensions near pinch-off. Phys. Fluids 27, 093301.Google Scholar
Morey, F. 1940 Thickness of a liquid film adhering to a surface slowly withdrawn from the liquid. J. Res. Natl Bur. Stand. 25, 385393.Google Scholar
van Rossum, J. 1958 Viscous lifting and drainage of liquids. Appl. Sci. Res. 7, 121144.Google Scholar
Schweizer, P. & Kistler, S.(Eds) 1997 Liquid Film Coating. Chapman and Hall.Google Scholar
Snoeijer, J., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J. 2008 Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100, 244502–(4).Google Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36, 2953.Google Scholar
Yu, Y. & Zhang, G. 2013 Colloidal lithography. Updat. Adv. Lithogr. 8, 334.Google Scholar