Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-22T12:37:47.943Z Has data issue: false hasContentIssue false

Dense flows of cohesive granular materials

Published online by Cambridge University Press:  17 January 2008

PIERRE G. ROGNON
Affiliation:
LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France CEMAGREF, 2 rue de la Papeterie, BP 76, 38402 Saint-Martin d'Hères, Francechevoir@lcpc.fr
JEAN-NOËL ROUX
Affiliation:
LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France
MOHAMED NAAÏM
Affiliation:
CEMAGREF, 2 rue de la Papeterie, BP 76, 38402 Saint-Martin d'Hères, Francechevoir@lcpc.fr
FRANÇOIS CHEVOIR
Affiliation:
LMSGC, Institut Navier, 2 allée Kepler, 77 420 Champs sur Marne, France

Abstract

Using molecular dynamic simulations, we investigate the characteristics of dense flows of model cohesive grains. We describe their rheological behaviour and its origin at the scale of the grains and of their organization. Homogeneous plane shear flows give access to the constitutive law of cohesive grains which can be expressed by a simple friction law similar to the case of cohesionless grains, but intergranular cohesive forces strongly enhance the resistance to the shear. Then we show the consequence on flows down a slope: a plugged region develops at the free surface where the cohesion intensity is the strongest. Moreover, we measure various indicators of the microstructure within flows which evidence the aggregation of grains owing to cohesion and we analyse the properties of the contact network (force distributions and anisotropy). This provides new insights into the interplay between the local contact law, the microstructure and the macroscopic behavior of cohesive grains. Movies are available with the online version of the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarons, L. & Sundaresan, S. 2006 Shear flow of assemblies of cohesive and non-cohesive granular materials. Powder Technol. 169, 1020.CrossRefGoogle Scholar
Alexander, A.W., Chaudhuri, B., Faqih, A., Muzzio, F. J., Davies, C. & Tomassone, M. S. 2006 Avalanching flow of cohesive powders. Powder Technol. 164, 1321.CrossRefGoogle Scholar
Allen, M. P. & Tildesley, D. J. 1987 Computer Simulation of Liquids. Oxford University Press.Google Scholar
Azanza, E. 1998 Ecoulements granulaires bidimensionnels sur plan incliné. PhD thesis, Ecole Nationale des Ponts et Chaussées, Paris.Google Scholar
Bocquet, L., Charlaix, E. & Restagno, F. 2002 Physics of humid granular media. C. R. Phys. 3, 207215.CrossRefGoogle Scholar
Bonamy, D., Daviaud, F., Laurent, L., Bonetti, M. & Bouchaud, J.-P. 2002 Multiscale clustering in granular surface flows. Phys. Rev. Lett. 89, 034301.CrossRefGoogle ScholarPubMed
Bouchet, A., Naaim, M., Ousset, F., Bellot, H. & Cauvard, D. 2003 Experimental determination of constitutive equations for dense and dry avalanches: presentation of the set-up and first results. Surv. Geophys. 24, 525541.CrossRefGoogle Scholar
Brewster, R., Grest, G. S., Landry, J. W. & Levine, A. J. 2005 Plug flow and the breakdown of Bagnold scaling in cohesive granular flows. Phys. Rev. E 72, 061301.Google ScholarPubMed
Campbell, C. S. 2002 Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261291.CrossRefGoogle Scholar
Campbell, C. S. 2005 Stress-controlled elastic granular shear flow. J. Fluid Mech. 539, 273297.CrossRefGoogle Scholar
Campbell, C. S. & Brennen, C. E. 1985 Computer simulation of granular shear flows. J. Fluid Mech. 151, 167188.CrossRefGoogle Scholar
Campbell, C. S., Cleary, P. W. & Hopkins, M. 1995 Large-scale landslide simulations: global deformation, velocity and basal friction. J. Geophys. Res. 100, 82678284.CrossRefGoogle Scholar
Castellanos, A. 2005 The relationship between attractive interparticule forces and bulk behavior in dry and uncharged fine powders. Adv. Phys. 54, 263376.CrossRefGoogle Scholar
Castellanos, A., Valverde, J. M., Perez, A. T., Ramos, A. & Watson, P. K. 1999 Flow regimes in fine cohesive powders. Phys. Rev. Lett. 82, 11561159.CrossRefGoogle Scholar
Castellanos, A., Valverde, J. M. & Quintanilla, M. A. S. 2001 Aggregation and sedimentation in gas-fluidized beds of cohesive powders. Phys. Rev. E 64, 041304.Google ScholarPubMed
Chateau, X., Moucheront, P. & Pitois, O. 2002 Micromechanics of unsaturated granular media. J. Engng Mech. 128, 856863.Google Scholar
Choi, J. C., Kudrolli, A., Rosales, R. R. & Bazant, M. Z. 2004 Diffusion and mixing in gravity-driven dense granular flows. Phys. Rev. Lett. 92, 174301.CrossRefGoogle ScholarPubMed
Craig, K., Buckholz, R. H. & Domoto, G. 1986 An experimental study of the rapid flow of dry cohesionless metal powders. J. Appl. Mech. 53, 935.CrossRefGoogle Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google ScholarPubMed
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Géotech. 29, 4765.CrossRefGoogle Scholar
Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. 1975 Effect of contact deformation on the adhesion of particules. J. Colloid Interface Sci. 53, 314326.CrossRefGoogle Scholar
Dominik, C. & Tielens, A. G. G. M 1997 The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J. 480, 647673.CrossRefGoogle Scholar
Elena, M., Urso, D., Lawrence, C. J. & Michael, J. A. 1999 Pendular, funicular, and capillary bridges: results for two dimensions. J. Colloid Interface Sci. 220, 4256.Google Scholar
Ennis, B. J., Tardos, J. L. G. & Pfeffer, R. 1991 A microlevel-based characterization of granulation phenomena. Powder Technd. 65, 257272.CrossRefGoogle Scholar
Ertas, D. & Halsey, T. C. 2002 Granular gravitational collapse and chute flow. Europhys. Lett. 60, 931935.CrossRefGoogle Scholar
Félix, G. & Thomas, N. 2004 Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221, 197213.CrossRefGoogle Scholar
Forsyth, A. J., Hutton, S. & Rhodes, M. J. 2002 Effect of cohesive interparticle force on the flow characteristics of granular materials. Powder Technol. 126, 150154.CrossRefGoogle Scholar
Fraysse, N., Thomé, H. & Petit, L. 1999 Humidity effect on the stability of sandpile. Eur. Phys. J. B 11, 615.CrossRefGoogle Scholar
Fuller, F. & Tabor, D. 1975 The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. 345, 327342.Google Scholar
Gady, B., Schleef, D. & Reifenberger, R. 1996 Identification of electrostatic and van der Waals forces between a micrometer-size sphere and flat surface. Phys. Rev. B 53, 8065.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Euro. Phys. J. E 14, 341365.Google Scholar
Gilabert, F. A., Roux, J.-N. & Castellanos, A. 2007 Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys. Rev. E 75, 011303.Google ScholarPubMed
Hatzes, A. P., Briges, F., Lin, D. N. C. & Sachtjen, S. 1991 Coagulation of particules in Saturn's rings: Measurements of the cohesive force of water frost. Icarus 89, 113121.CrossRefGoogle Scholar
Hertz, H. 1881 On the contact of elastic bodies. J. Reine Angew. Math. 92, 156171.Google Scholar
Hornbaker, D. R., Albert, I., Barabasi, A.-L. & Schiffer, P. 1997 What keeps sandcastles up. Nature 387, 765766.CrossRefGoogle Scholar
Hutter, K. R. & Rajagopal, K. R. 1994 On flow of granular materials. Cont. Mech. Thermodyn. 6, 81139.CrossRefGoogle Scholar
Iordanoff, I., Berthier, Y., Descartes, S. & Heshmat, H. 2001 A review for recent approaches for modelling third bodies. J. Tribol. 124, 725735.CrossRefGoogle Scholar
Iordanoff, I., Sève, B. & Berthier, Y. 2002 Solid third body analysis using a discrete approach: influence of adhesion and particle size on the macroscopic behavior of the contact. J. Tribol. 124, 530538.CrossRefGoogle Scholar
Iordanoff, I., Fillot, N. & Berthier, Y. 2005 Numerical study of a thin layer of cohesive particles under plane shearing. Powder Technol. 159, 4654.CrossRefGoogle Scholar
Israelachvili, J. 1992 Intermolecular and Surface Forces. San Diego.Google Scholar
Johnson, K. L. 1985 Contact Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Johnson, K. L., Kendall, K. & Roberts, A. D. 1971 Surface energy and contact of elastic solids. Proc. R. Acad. Lond. A 324, 301324.Google Scholar
Jones, R., Pollock, H. M., Geldart, D. & Verlinden-Luts, A. 2004 Frictional forces between cohesive powder particules studied by AFM. Ultramicroscopy 100, 5978.CrossRefGoogle Scholar
Josserand, C., Lagree, P.-Y. & Lhuillier, D. 2004 Stationary shear flows of dense granular materials: a tentative continuum modelling. Euro. Phys. J. E 14, 127135.Google ScholarPubMed
Kadau, D., Bartels, G., Brendel, L. & Wolf, D. E. 2002 Contact dynamics simulations of compacting cohesive granular systems. Comput. Phys. Commun. 147, 190193.CrossRefGoogle Scholar
Kendall, K. 1993 Significance of interparticle forces to powder behaviour. In Powders and Grains (ed. Thornton, C.), pp. 2531. A. A. Balkema.Google Scholar
Kendall, K. 1994 Adhesion: molecules and mechanics. Science 263, 17201725.CrossRefGoogle ScholarPubMed
Kim, H. & Arastoopour, H. 2002 Extension of kinetic theory to cohesive particule flow. Powder Technol. 122, 8394.CrossRefGoogle Scholar
Klausner, J. F. 2000 Experimental investigation of cohesive powder rheology. Powder Technol. 112, 94101.CrossRefGoogle Scholar
Lätzel, M., Luding, S. & Hermann, H. J. 2000 Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Gran. Matt. 2, 123135.CrossRefGoogle Scholar
Lees, A. W. & Edwards, S. F. 1972 The computer study of transport processes under extreme conditions. J. Phys. C 5, 19211929.Google Scholar
Luding, S., Tykhoniuk, R. & Thomas, J. 2003 Anisotropic material behavior in dense, cohesive powders. Chem. Engng Sci. 12, 12291232.Google Scholar
Mason, T. G., Levine, A. J., Hertas, D. & Hasley, T. C. 1999 The critical angle of wet granular sand piles. Phys. Rev. E 60, R5044.Google Scholar
Mattutis, H. G. & Schinner, A. 2001 Particule simulation of cohesive granular materials. Intl J. Mod. Phys. C 12, 10111021.CrossRefGoogle Scholar
Maugis, D. 1992 Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243269.CrossRefGoogle Scholar
Mei, R., Shang, H., Walton, O. & Klausner, J. 2000 Concentration non-uniformity in simple shear flow of cohesive powders. Powder Technol. 112, 102110.CrossRefGoogle Scholar
Miclea, C., Tanasoiu, C., Miclea, C. F., Sima, F. N. & Cioangher, M. 2005 Influence of forming pressure of compacted powders on densification of sintered body. In Powders and Grains 2005 (ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.), pp. 655658. A. A. Balkema.Google Scholar
Mills, P., Rognon, P. G. & Chevoir, F. 2005 Transient rigid clusters in dense granular flows. In Powders and Grains 2005 (ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.), pp. 365369. A. A. Balkema.Google Scholar
Nase, S. T., Vargas, W. L., Abatan, A. & McCarthy, J. J. 2001 Discrete characterization tools for cohesive granular material. Powder Technol. 116, 214223.CrossRefGoogle Scholar
Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.CrossRefGoogle Scholar
O'Hern, C., Langer, S. A., Liu, A. J. & Nagel, S. R. 2001 Force distributions near the jamming and glass transitions. Phys. Rev. Lett. 86, 111.CrossRefGoogle ScholarPubMed
Ovarlez, G. & Clément, E. 2003 Slow dynamics and aging of a confined granular flow. Phys. Rev. E 68, 031302.Google ScholarPubMed
Pitois, O. 1999 Assemblies of lubrificated grains: development of an experimental model system and study of the contact law. PhD thesis, Ecole Nationale des Ponts et Chaussées, in french.Google Scholar
Pouliquen, O. 1999 Scaling laws in granular flows down a rough inclined plane. Phys. Fluids 11, 542548.CrossRefGoogle Scholar
Pouliquen, O. 2004 Velocity correlation in dense granular flows. Phys. Rev. Lett. 93, 248001.CrossRefGoogle ScholarPubMed
Pouliquen, O. & Chevoir, F. 2002 Dense flows of dry granular materials. C. R. Phys. 3, 163175.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2002 Friction law for dense granular flow: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133151.CrossRefGoogle Scholar
Prochnow, M. 2002 Dense flows of dry grains. PhD thesis, Ecole Nationale des Ponts et Chaussées, http://pastel.paristech.org/archive/00000321.Google Scholar
Quintanilla, M. A. S, Castellanos, A. & Valverde, J. M. 2003 Interparticle contact forces in fine cohesive powders. Proc. Appl. Math. Mech. 3, 206.CrossRefGoogle Scholar
Radjaï, F., Jean, M., Moreau, J. J. & Roux, S. 1996 Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77, 274277.CrossRefGoogle ScholarPubMed
Radjaï, F., Preechawuttipong, I. & Peyroux, R. 2001 Cohesive granular texture. In Continuous and Discontinuous Modelling of Cohesive Frictional Materials (ed. Vermeer, P. A., Diebels, S., Ehlers, W., Herrmann, H. J., Luding, S. & Ramm, E.), pp. 148159. Springer.Google Scholar
Rajchenbach, J. 2000 Granular flows. Adv. Phys. 49, 229256.CrossRefGoogle Scholar
Richard, P., Philippe, P., Barbe, F., Bourles, S., Thibault, W. & Bideau, D. 2003 Analysis by X-ray microtomography of a granular packing undergoing compaction. Phys. Rev. E 68, 020301.Google ScholarPubMed
Richefeu, V., El Youssoufi, M. S., Peyroux, R. & Bohatier, C. 2005 Frictional contact and cohesion laws for Casagrande's shear test on granular materials by 3D DEM – comparison with experiments. In Powders and Grains 2005 (ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.), pp. 509513. A. A. Balkema.Google Scholar
Richefeu, V., El Youssoufi, M. S. & Radjaï, F. 2006 Shear strength properties of wet granular materials. Phys. Rev. E 73, 051304.Google ScholarPubMed
Rietema, K. 1991 The Dynamics of Fine Powders. Elsevier.CrossRefGoogle Scholar
Rivier, N. 2005 Granular matter with even circuits: ball-bearing and dry quicksand. In Powders and Grains 2005 (ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.), pp. 2932. A. A. Balkema.Google Scholar
Rognon, P. G., Roux, J.-N., Wolf, D., Naaim, M. & Chevoir, F. 2006 Rheophysics of cohesive granular materials. Europhys. Lett. 74, 644650.CrossRefGoogle Scholar
Rognon, P. G., Chevoir, F., Bellot, H., Ousset, F., Naaim, M. & Coussot, P. 2007 Rheology of dense snow flows. J. Rheol. (Submitted).Google Scholar
Roux, J. N. & Chevoir, F. 2005 Discrete numerical simulations and mechanical behaviour of granular materials. Bull. Lab. Ponts Chaussées 254, 109138.Google Scholar
Roux, J. N. & Combe, G. 2002 Quasistatic rheology and the origins of strain. C. R. Phys. 3, 131140.CrossRefGoogle Scholar
Rumpf, H. 1958 Grundlagen und Methoden des Granulierens. 1. Teil: Begriffe Anwendungen und Eigenschaften der Granulate. Chem. Ing. Tech. 30.CrossRefGoogle Scholar
Samandani, A. & Kudrolli, A. 2001 Angle of repose and segregation in cohesive granular matter. Phys. Rev. E 64, 19.Google Scholar
Silbert, S. L., Ertas, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane. Phys. Rev. E 64, 385403.Google ScholarPubMed
Taboada, A., Estrada, N. & Radjaï, F. 2006 Additive decomposition of shear strength in cohesive granular media from grain-scale interactions. Phys. Rev. Lett. 97, 098302.CrossRefGoogle ScholarPubMed
Tabor, D. 1981 Friction – the present understanding. J. Lubrication 103, 169179.CrossRefGoogle Scholar
Talu, I., Tardos, G. I. & Ruud van Ommen, J. 2001 Use of stress fluctuations to monitor wet granulation of powders. Powder Technol. 117, 149162.CrossRefGoogle Scholar
Tegzes, P., Albert, R., Paskvan, M., Barabasi, A.-L., Viczek, T. & Schiffer, P. 1999 Liquid-induced transitions in granular media. Phys. Rev. E 60, 58235826.Google ScholarPubMed
Tegzes, P., Viczek, T. & Schiffer, P. 2002 Avalanche dynamics in wet granular materials. Phys. Rev. Lett. 89, 14.CrossRefGoogle ScholarPubMed
Tegzes, P., Viczek, T. & Schiffer, P. 2003 Development of correlations in the dynamics of granular avalanches. Phys. Rev. E 67, 051303.Google ScholarPubMed
Thornton, C. 1997 Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres. Trans. ASME E: J. Appl. Mech. 64, 383386.CrossRefGoogle Scholar
Tomas, J. 2004 Fundamentals of cohesive powder consolidation and flow. Gran. Matt. 6, 7586.CrossRefGoogle Scholar
Valverde, J. M., Castellanos, A. & Ramos, A. 2000 Avalanches in fine, cohesive powders. Phys. Rev. E 62, 68516861.Google ScholarPubMed
Weber, M. W., Hoffman, D. K. & Hrenya, C. M. 2004 Discrete-particle simulations of cohesive granular flow using a square-well potential. Gran. Matt. 6, 239254.CrossRefGoogle Scholar
Wolf, D. E., Unger, T., Kadau, D. & Brendel, L. 2005 Compaction of cohesive powders. In Powders and Grains 2005 (ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.), pp. 525535. A. A. Balkema.Google Scholar

Rognon et al. supplementary movie

Movie 1. Dense flow of grains without cohesion: molecular dynamics simulation of the homogeneous plane shear in a periodic domain. The inertial number I, which is defined as the shear rate times the square root of the grain mass divided by the pressure, is 0.1. The red connecting lines denote the repulsive contact forces between grains.

Download Rognon et al. supplementary movie(Video)
Video 6.8 MB

Rognon et al. supplementary movie

Movie 1. Dense flow of grains without cohesion: molecular dynamics simulation of the homogeneous plane shear in a periodic domain. The inertial number I, which is defined as the shear rate times the square root of the grain mass divided by the pressure, is 0.1. The red connecting lines denote the repulsive contact forces between grains.

Download Rognon et al. supplementary movie(Video)
Video 2 MB

Rognon et al. supplementary movie

Movie 2. Dense flow of cohesive grains: molecular dynamics simulation of the homogeneous plane shear in a periodic domain. The inertial number is still 0.1, but the cohesion number, which is defined as the tensile resistance of the contact divided by the typical force imposed by the pressure, is 50. The blue connecting lines denote the attractive contact forces between grains. Correlated motions point out the formation of clusters that can break, deform and reform throughout the flow. This evolution of microstructure strongly affects the macroscopic constitutive law.

Download Rognon et al. supplementary movie(Video)
Video 6.9 MB

Rognon et al. supplementary movie

Movie 2. Dense flow of cohesive grains: molecular dynamics simulation of the homogeneous plane shear in a periodic domain. The inertial number is still 0.1, but the cohesion number, which is defined as the tensile resistance of the contact divided by the typical force imposed by the pressure, is 50. The blue connecting lines denote the attractive contact forces between grains. Correlated motions point out the formation of clusters that can break, deform and reform throughout the flow. This evolution of microstructure strongly affects the macroscopic constitutive law.

Download Rognon et al. supplementary movie(Video)
Video 2 MB