Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T11:34:57.828Z Has data issue: false hasContentIssue false

Characterization of superhydrophobic surfaces for drag reduction in turbulent flow

Published online by Cambridge University Press:  27 April 2018

James W. Gose*
Affiliation:
Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Kevin Golovin
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Mathew Boban
Affiliation:
Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Joseph M. Mabry
Affiliation:
Rocket Propulsion Division, Air Force Research Laboratory, Edwards Air Force Base, CA 93524, USA
Anish Tuteja
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Marc Perlin
Affiliation:
Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Steven L. Ceccio
Affiliation:
Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109, USA
*
Email address for correspondence: jgose@umich.edu

Abstract

A significant amount of the fuel consumed by marine vehicles is expended to overcome skin-friction drag resulting from turbulent boundary layer flows. Hence, a substantial reduction in this frictional drag would notably reduce cost and environmental impact. Superhydrophobic surfaces (SHSs), which entrap a layer of air underwater, have shown promise in reducing drag in small-scale applications and/or in laminar flow conditions. Recently, the efficacy of these surfaces in reducing drag resulting from turbulent flows has been shown. In this work we examine four different, mechanically durable, large-scale SHSs. When evaluated in fully developed turbulent flow, in the height-based Reynolds number range of 10 000 to 30 000, significant drag reduction was observed on some of the surfaces, dependent on their exact morphology. We then discuss how neither the roughness of the SHSs, nor the conventional contact angle goniometry method of evaluating the non-wettability of SHSs at ambient pressure, can predict their drag reduction under turbulent flow conditions. Instead, we propose a new characterization parameter, based on the contact angle hysteresis at higher pressure, which aids in the rational design of randomly rough, friction-reducing SHSs. Overall, we find that both the contact angle hysteresis at higher pressure, and the non-dimensionalized surface roughness, must be minimized to achieve meaningful turbulent drag reduction. Further, we show that even SHSs that are considered hydrodynamically smooth can cause significant drag increase if these two parameters are not sufficiently minimized.

Type
JFM Papers
Copyright
© Cambridge University Press 2018. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aljallis, E., Sikka, V. K., Jones, A. K., Sarshar, M. A., Datla, Raju & Choi, C. H. 2013 Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 25 (2), 025103.Google Scholar
Bhushan, B. & Jung, Y. C. 2011 Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog. Mater. Sci. 56 (1), 1108.Google Scholar
Bidkar, R. A., Leblanc, L., Kulkarni, A. J., Bahadur, V., Ceccio, S. L. & Perlin, M. 2014 Skin-friction drag reduction in the turbulent regime using random-textured hydrophobic surfaces. Phys. Fluids 26 (8), 085108.Google Scholar
Bixler, G. D. & Bhushan, B. 2013a Bioinspired micro/nanostructured surfaces for oil drag reduction in closed channel flow. Soft Matt. 9 (5), 16201635.Google Scholar
Bixler, G. D. & Bhushan, B. 2013b Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Adv. Funct. Mater. 23 (36), 45074528.Google Scholar
Bixler, G. D. & Bhushan, B. 2013c Shark skin inspired low-drag microstructured surfaces in closed channel flow. J. Colloid Interface Sci. 393 (1), 384396.Google Scholar
Bushnell, D. M. & Moore, K. J. 1991 Drag reduction in nature. Annu. Rev. Fluid Mech. 23 (1), 6579.CrossRefGoogle Scholar
Busse, A., Sandham, N. D., Mchale, G. & Newton, M. I. 2013 Change in drag, apparent slip and optimum air layer thickness for laminar flow over an idealised superhydrophobic surface. J. Fluid Mech. 727, 488508.CrossRefGoogle Scholar
Campos, R., Guenthner, A. J., Haddad, T. S. & Mabry, J. M. 2011 Fluoroalkyl-functionalized silica particles: synthesis, characterization, and wetting characteristics. Langmuir 27 (16), 1020610215.Google Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.Google Scholar
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42 (1), 183203.CrossRefGoogle Scholar
Daniello, R. J., Waterhouse, N. E. & Rothstein, J. P. 2009 Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 21 (8), 085103.Google Scholar
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369 (1940), 14121427.Google Scholar
Gogte, S., Vorobieff, P., Truesdell, R., Mammoli, A., van Swol, F., Shah, P. & Brinker, C. J. 2005 Effective slip on textured superhydrophobic surfaces. Phys. Fluids 17 (5), 051701.Google Scholar
Golovin, K., Boban, M., Mabry, J. M. & Tuteja, A. 2017 Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl. Mater. Interfaces 9 (12), 1121211223.CrossRefGoogle ScholarPubMed
Golovin, K., Lee, D. H., Mabry, J. M. & Tuteja, A. 2013 Transparent, flexible, superomniphobic surfaces with ultra-low contact angle hysteresis. Angew. Chem. Intl Ed. Engl. 52 (49), 1300713011.Google Scholar
Golovin, K. B., Gose, J. W., Perlin, M., Ceccio, S. L. & Tuteja, A. 2016 Bioinspired surfaces for turbulent drag reduction. Phil. Trans. R. Soc. Lond. A 374 (2073), 20160189.Google Scholar
Gruncell, B. R. K., Sandham, N. D. & McHale, G. 2013 Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay. Phys. Fluids 25 (4), 043601.Google Scholar
Henoch, C., Krupenkin, T. N., Kolodner, P., Taylor, J. A., Hodes, M. S., Lyons, A. M., Peguero, C. & Breuer, K. 2006 Turbulent drag reduction using superhydrophobic surfaces. In Proceedings of the 3rd AIAA Flow Control Conference, vol. 2, pp. 840844. AIAA.Google Scholar
Hokmabad, B. V. & Ghaemi, S. 2016 Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure. Phys. Fluids 28 (1), 015112.Google Scholar
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26 (9), 095102.Google Scholar
Jing, D. & Bhushan, B. 2013 Boundary slip of superoleophilic, oleophobic, and superoleophobic surfaces immersed in deionized water, hexadecane, and ethylene glycol. Langmuir 29 (47), 1469114700.CrossRefGoogle ScholarPubMed
Joseph, P. & Tabeling, P. 2005 Direct measurement of the apparent slip length. Phys. Rev. E 71 (3), 035303.CrossRefGoogle ScholarPubMed
Jung, Y. C. & Bhushan, B. 2010 Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J. Phys.: Condens. Matter 22 (3), 035104.Google Scholar
Kanda, M., Moriwaki, R. & Kasamatsu, F. 2004 Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol. 112 (2), 343368.CrossRefGoogle Scholar
Kim, J. & Kim, C. J. 2002 Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 479482. IEEE.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.Google Scholar
Lauga, Eric & Stone, H A 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.Google Scholar
Lee, C., Choi, C. H. & Kim, C. J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101 (6), 064501.Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.Google Scholar
Leonardi, S., Orlandi, P. & Antonia, R. A. 2007 Properties of d- and k-type roughness in a turbulent channel flow. Phys. Fluids 19 (12), 125101.Google Scholar
Ling, H., Srinivasan, S., Golovin, K., McKinley, G. H., Tuteja, A. & Katz, J. 2016 High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces. J. Fluid Mech. 801, 670703.Google Scholar
Mabry, J. M., Vij, A., Iacono, S. T. & Viers, B. D. 2008 Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew. Chem. Intl Ed. Engl. 47 (22), 41374140.Google Scholar
Mäkiharju, S. A., Perlin, M. & Ceccio, S. L. 2012 On the energy economics of air lubrication drag reduction. Intl J. Naval Arch. Ocean Engng 4 (4), 412422.Google Scholar
Min, T. G. & Kim, J. 2004 Effects of hydrophobic surface on skin-friction drag. Phys. Fluids 16 (7), L55L58.Google Scholar
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. Fr. 6, 389440.Google Scholar
Ou, Jia & Rothstein, J. P. 2005 Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces. Phys. Fluids 17 (10), 103606.Google Scholar
Park, H., Sun, G. & Kim, C.-J. C. J. 2014 Superhydrophobic turbulent drag reduction as a function of surface grating parameters. J. Fluid Mech. 747, 722734.CrossRefGoogle Scholar
Perlin, M., Dowling, D. R. & Ceccio, S. L. 2016 Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. Trans. ASME J. Fluids Engng 138 (9), 091104.Google Scholar
Rothstein, J. P. 2010 Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89109.Google Scholar
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.CrossRefGoogle Scholar
Schultz, M. P. & Flack, K. A. 2007 The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J. Fluid Mech. 580, 381405.CrossRefGoogle Scholar
Schultz, M. P. & Flack, K. A. 2013 Reynolds-number scaling of turbulent channel flow. Phys. Fluids 25 (2), 025104.Google Scholar
Song, D., Daniello, R. J. & Rothstein, J. P. 2014 Drag reduction using superhydrophobic sanded Teflon surfaces. Exp. Fluids 55 (8), 1783.Google Scholar
Srinivasan, S., Choi, W., Park, K. C., Chhatre, S. S., Cohen, R. E. & McKinley, G. H. 2013 Drag reduction for viscous laminar flow on spray-coated non-wetting surfaces. Soft Matt. 9 (24), 56915702.Google Scholar
Srinivasan, S., Kleingartner, J. A., Gilbert, J. B., Cohen, R. E., Milne, A. J. B. & McKinley, G. H. 2015 Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys. Rev. Lett. 114 (1), 014501.Google Scholar
Streeter, B.2014 In Global Marine Fuel Trends 2030.Google Scholar
Ünal, U. O., Ünal, B. & Atlar, M. 2012 Turbulent boundary layer measurements over flat surfaces coated by nanostructured marine antifoulings. Exp. Fluids 52 (6), 14311448.Google Scholar
US Department of Transportation2012 Table 4-5: Fuel consumption by mode of transportation in physical units. Tech. Rep.Google Scholar
Watanabe, K. & Udagawa, H. 2001 Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall. AIChE J. 47 (2), 256262.Google Scholar
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill Higher Education.Google Scholar
Woolford, B., Prince, J., Maynes, D. & Webb, B. W. 2009 Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls. Phys. Fluids 21 (8), 5106.Google Scholar
Xie, Z. & Castro, I. P. 2006 LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul. Combust. 76 (3), 291312.Google Scholar
Xie, Z. T., Coceal, O. & Castro, I. P. 2008 Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol. 129 (1), 123.Google Scholar
Yang, J., Zhang, Z., Xu, X., Men, X., Zhu, X. & Zhou, X. 2011 Superoleophobic textured aluminum surfaces. New J. Chem. 35 (11), 24222426.CrossRefGoogle Scholar
Young, T. 1805 An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 6587.Google Scholar
Zanoun, E., Nagib, H. & Durst, F. 2009 Refined c f relation for turbulent channels and consequences for high-Re experiments. Fluid Dyn. Res. 41 (2), 021405.Google Scholar
Zhao, J. P., Du, X. D. & Shi, X. H. 2007 Experimental research on friction-reduction with super-hydrophobic surfaces. J. Mar. Sci. Appl. 6 (3), 5861.CrossRefGoogle Scholar