Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T00:16:34.379Z Has data issue: false hasContentIssue false

Aerodynamic droplet atomization model (ADAM)

Published online by Cambridge University Press:  27 February 2023

Isaac M. Jackiw
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
Nasser Ashgriz*
Affiliation:
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
*
Email address for correspondence: ashgriz@mie.utoronto.ca

Abstract

The present work studies low viscosity twin-fluid atomization experimentally and analytically to characterize and predict the droplet size distribution of the spray. The study is based on experiments conducted using commercially available twin-fluid nozzles with water as the liquid. Shadowgraph images were used to visualize the near-nozzle flow while the droplet size distribution was measured in the far field using a Malvern Spraytec. To analytically model the atomization of the spray, the authors’ recent works on aerodynamic droplet breakup, which describe the formation and breakup of ligament and bag structures by multiple mechanisms, are extended to provide an analytical prediction of the droplet size distribution of the spray that is validated against the present experiments. The present model is developed to be a good physical representation of the spray behaviour at practical operating conditions. A Python implementation of the model has been deposited in a GitHub repository to accompany this work.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliseda, A., Hopfinger, E.J., Lasheras, J.C., Kremer, D.M., Berchielli, A. & Connolly, E.K. 2008 Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. Intl J. Multiphase Flow 34 (2), 161175.CrossRefGoogle Scholar
Ashgriz, N. 2011 Handbook of Atomization and Sprays: Theory and Applications. Springer.CrossRefGoogle Scholar
Babinsky, E. & Sojka, P.E. 2002 Modeling drop size distributions. Prog. Energy Combust. Sci. 28 (4), 303329.CrossRefGoogle Scholar
Behzad, M., Ashgriz, N. & Karney, B.W. 2016 Surface breakup of a non-turbulent liquid jet injected into a high pressure gaseous crossflow. Intl J. Multiphase Flow 80, 100117.CrossRefGoogle Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17 (3), 032106.CrossRefGoogle Scholar
Canals, A., Wagner, J., Browner, R.F. & Hernandis, V. 1988 Empirical model for estimating drop size distributions of aerosols generated by inductively coupled plasma nebulizers. Spectrochim. Acta B 43 (9–11), 13211335.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Dover.Google Scholar
Chigier, N. & Farago, Z. 1992 Morphological classification of disintegration of round liquid jets in a coaxial air stream. Atomiz. Sprays 2 (2), 137153.CrossRefGoogle Scholar
Culick, F.E.C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.CrossRefGoogle Scholar
Dimotakis, P.E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24 (11), 17911796.CrossRefGoogle Scholar
Frisch, U. & Sornette, D. 1997 Extreme deviations and applications. J. Phys. II 7 (9), 11551171.Google Scholar
Fuster, D., Bagué, A., Boeck, T., Le Moyne, L., Leboissetier, A., Popinet, S., Ray, P., Scardovelli, R. & Zaleski, S. 2009 Simulation of primary atomization with an octree adaptive mesh refinement and VOF method. Intl J. Multiphase Flow 35 (6), 550565.CrossRefGoogle Scholar
Fuster, D., Matas, J.P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.CrossRefGoogle Scholar
Gordillo, J.M., Pérez-Saborid, M. & Ganán-Calvo, A.M. 2001 Linear stability of co-flowing liquid-gas jets. J. Fluid Mech. 448, 2351.CrossRefGoogle Scholar
Guildenbecher, D.R., López-Rivera, C. & Sojka, P.E. 2009 Secondary atomization. Exp. Fluids 46 (3), 371402.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2021 On aerodynamic droplet breakup. J. Fluid Mech. 913, A33.CrossRefGoogle Scholar
Jackiw, I.M. & Ashgriz, N. 2022 Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940, A17.CrossRefGoogle Scholar
Jain, S.S., Tyagi, N., Prakash, R.S., Ravikrishna, R.V. & Tomar, G. 2019 Secondary breakup of drops at moderate Weber numbers: effect of density ratio and Reynolds number. Intl J. Multiphase Flow 117, 2541.CrossRefGoogle Scholar
Jarrahbashi, D., Sirignano, W.A., Popov, P.P. & Hussain, F. 2016 Early spray development at high gas density: hole, ligament and bridge formations. J. Fluid Mech. 792, 186231.CrossRefGoogle Scholar
Jiang, D. & Ling, Y. 2021 Impact of inlet gas turbulence on the formation, development and breakup of interfacial waves in a two-phase mixing layer. J. Fluid Mech. 921, 132.CrossRefGoogle Scholar
Joseph, D.D., Beavers, G.S. & Funada, T. 2002 Rayleigh–Taylor instability of viscoelastic drops at high Weber numbers. J. Fluid Mech. 453, 109132.CrossRefGoogle Scholar
Joseph, D.D., Belanger, J. & Beavers, G.S. 1999 Breakup of a liquid drop suddenly exposed to a high-speed airstream. Intl J. Multiphase Flow 25, 12631303.CrossRefGoogle Scholar
Joshi, S. & Anand, T.N.C. 2022 Droplet deformation during secondary breakup: role of liquid properties. Exp. Fluids 63, 109.CrossRefGoogle Scholar
Keshavarz, B., Houze, E.C., Moore, J.R., Koerner, M.R. & McKinley, G.H. 2020 Rotary atomization of Newtonian and viscoelastic liquids. Phys. Rev. Fluids 5, 033601.CrossRefGoogle Scholar
Kourmatzis, A. & Masri, A.R. 2014 Air-assisted atomization of liquid jets in varying levels of turbulence. J. Fluid Mech. 764, 95132.CrossRefGoogle Scholar
Kumar, A. & Sahu, S. 2020 Influence of nozzle geometry on primary and large-scale instabilities in coaxial injectors. Chem. Engng Sci. 221, 115694.CrossRefGoogle Scholar
Lasheras, J.C. & Hopfinger, E.J. 2000 Liquid jet instability and atomization in a coaxial gas stream. Annu. Rev. Fluid Mech. 32, 275308.CrossRefGoogle Scholar
Li, X. & Tankin, R.S. 1987 Droplet size distribution: a derivation of a Nukiyama-Tanasawa type distribution function. Combust. Sci. Technol. 56 (1–3), 6576.Google Scholar
Machicoane, N., Bothell, J.K., Li, D., Morgan, T.B., Heindel, T.J., Kastengren, A.L. & Aliseda, A. 2019 Synchrotron radiography characterization of the liquid core dynamics in a canonical two-fluid coaxial atomizer. Intl J. Multiphase Flow 115, 18.CrossRefGoogle Scholar
Malvern Instruments Ltd. 2007 Spraytec User Manual (3.0), 216.Google Scholar
Marcotte, F. & Zaleski, S. 2019 Density contrast matters for drop fragmentation thresholds at low Ohnesorge number. Phys. Rev. Fluids 4 (10), 116.CrossRefGoogle Scholar
Marmottant, P. & Villermaux, E. 2004 a Fragmentation of stretched liquid ligaments. Phys. Fluids 16 (8), 27322741.CrossRefGoogle Scholar
Marmottant, P.H. & Villermaux, E. 2004 b On spray formation. J. Fluid Mech. 498 (498), 73111.CrossRefGoogle Scholar
Matas, J.P. 2015 Inviscid versus viscous instability mechanism of an air-water mixing layer. J. Fluid Mech. 768, 375387.CrossRefGoogle Scholar
Matas, J.P., Delon, A. & Cartellier, A. 2018 Shear instability of an axisymmetric air-water coaxial jet. J. Fluid Mech. 843, 575600.CrossRefGoogle Scholar
Matas, J.P., Marty, S., Dem, M.S. & Cartellier, A. 2015 Influence of gas turbulence on the instability of an air–water mixing layer. Phys. Rev. Lett. 115 (7), 15.CrossRefGoogle ScholarPubMed
Müller, T., Sänger, A., Habisreuther, P., Jakobs, T., Trimis, D., Kolb, T. & Zarzalis, N. 2016 Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow. Intl J. Multiphase Flow 87, 212228.CrossRefGoogle Scholar
Nukiyama, S. & Tanasawa, Y. 1950 Experiments on the atomization of liquids in an airstream. Tech. Rep. Defence Research Board, Department of National Defence, Canada.Google Scholar
Odier, N., Balarac, G. & Corre, C. 2018 Numerical analysis of the flapping mechanism for a two-phase coaxial jet. Intl J. Multiphase Flow 106, 164178.CrossRefGoogle Scholar
Ranger, A.A. & Nicolls, J.A. 1969 Aerodynamic shattering of liquid drops. AIAA J. 7 (2), 285290.Google Scholar
Raynal, L. 1997 Instabilite et entrainement a l'interface d'une couche de melange liquide-gaz. PhD thesis, Universite Joseph Forier – Grenoble I.Google Scholar
Rizk, N.K.K. & Lefebvre, A.H. 1983 Spray characteristics of plain-jet airblast atomizers. Trans. ASME J. Engng Gas Turbines Power 106 (83), 634638.CrossRefGoogle Scholar
Shinjo, J. 2018 Recent advances in computational modeling of primary atomization of liquid fuel sprays. Energies 11 (11), 2971.CrossRefGoogle Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36 (7), 513532.CrossRefGoogle Scholar
Sijs, R., Kooij, S., Holterman, H.J., Van De Zande, J. & Bonn, D. 2021 Drop size measurement techniques for sprays: comparison of image analysis, phase doppler particle analysis, and laser diffraction. AIP Adv. 11, 015315.CrossRefGoogle Scholar
Singh, G., Kourmatzis, A., Gutteridge, A. & Masri, A.R. 2020 Instability growth and fragment formation in air assisted atomization. J. Fluid Mech. 892, A29.CrossRefGoogle Scholar
Tsai, S.C., Ghazimorad, K. & Viers, B. 1991 Airblast atomization of micronized coal slurries using a twin-fluid jet atomizer. Fuel 70 (4), 483490.CrossRefGoogle Scholar
Varga, C.M., Lasheras, J.C. & Hopfinger, E.J. 2003 Initial breakup of a small-diameter liquid jet by a high-speed gas stream. J. Fluid Mech. 497 (497), 405434.CrossRefGoogle Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39, 419446.CrossRefGoogle Scholar
Villermaux, E. 2020 Fragmentation versus cohesion. J. Fluid Mech. 898, P1.CrossRefGoogle Scholar
Vledouts, A., Quinard, J., Vandenberghe, N. & Villermaux, E. 2016 Explosive fragmentation of liquid shells. J. Fluid Mech. 788, 246273.CrossRefGoogle Scholar
Wang, Y., Dandekar, R., Bustos, N., Poulain, S. & Bourouiba, L. 2018 Universal rim thickness in unsteady sheet fragmentation. Phys. Rev. Lett. 120 (20), 204503.CrossRefGoogle ScholarPubMed
Wittner, M., Karbstein, H. & Gaukel, V. 2018 Pneumatic atomization: beam-steering correction in laser diffraction measurements of spray droplet size distributions. Appl. Sci. 8 (10), 1738.CrossRefGoogle Scholar
Yecko, P., Zaleski, S. & Fullana, J.M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14 (12), 41154122.CrossRefGoogle Scholar
Zandian, A., Sirignano, W.A. & Hussain, F. 2018 Understanding liquid-jet atomization cascades via vortex dynamics. J. Fluid Mech. 843, 293354.CrossRefGoogle Scholar
Zandian, A., Sirignano, W.A. & Hussain, F. 2019 Vorticity dynamics in a spatially developing liquid jet inside a co-flowing gas. J. Fluid Mech. 877, 429470.CrossRefGoogle Scholar
Zhao, H., Liu, H.-F., Li, W.-F. & Xu, J.-L. 2010 Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys. Fluids 22, 114103.CrossRefGoogle Scholar
Supplementary material: File

Jackiw and Ashgriz supplementary material

Jackiw and Ashgriz supplementary material

Download Jackiw and Ashgriz supplementary material(File)
File 102.1 KB