Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T14:49:24.107Z Has data issue: false hasContentIssue false

Accelerated flow past a symmetric aerofoil: experiments and computations

Published online by Cambridge University Press:  30 October 2007

T. K. SENGUPTA
Affiliation:
Department of Aerospace Engineering, I.I.T. Kanpur, U.P. 208016, Indiatksen@iitk.ac.in
T. T. LIM
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Singapore119260mpelimtt@nus.edu.sg
SHARANAPPA V. SAJJAN
Affiliation:
Department of Aerospace Engineering, I.I.T. Kanpur, U.P. 208016, Indiatksen@iitk.ac.in
S. GANESH
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Singapore119260mpelimtt@nus.edu.sg
J. SORIA
Affiliation:
Department of Mechanical Engineering, Monash University, Melbourne, VIC 3168, Australiajulio.soria@eng.monash.edu.au

Abstract

Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and computationally for Reynolds number Re = 7968 at an angle of attack α = 30°. Experiments are conducted in a specially designed piston-driven water tunnel capable of producing free-stream velocity with different ramp-type accelerations, and the DPIV technique is used to measure the resulting flow field past the aerofoil. Computations are also performed for other published data on flow past an NACA 0015 aerofoil in the range 5200 ≤ Re ≤ 35000, at different angles of attack. One of the motivations is to see if the salient features of the flow captured experimentally can be reproduced numerically. These computations to solve the incompressible Navier–Stokes equation are performed using high-accuracy compact schemes. Load and moment coefficient variations with time are obtained by solving the Poisson equation for the total pressure in the flow field. Results have also been analysed using the proper orthogonal decomposition technique to understand better the evolving vorticity field and its dependence on Reynolds number and angle of attack. An energy-based stability analysis is performed to understand unsteady flow separation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badr, H. M., Dennis, S. C. R. & Kocabiyik, S. 1996 Symmetrical flow past an accelerated circular cylinder. J. Fluid Mech. 308, 97110.CrossRefGoogle Scholar
Brachet, M., Meneguzzi, M., Politano, H. & Sulem, P. 1988 The dynamics of freely decaying two-dimensional turbulence. J. Fluid Mech. 194, 333349.CrossRefGoogle Scholar
Brendel, M. & Mueller, T. J. 1988 Boundary-layer measurements on an airfoil at low Reynolds numbers. J. Aircraft 25, 612617.CrossRefGoogle Scholar
Carr, L. W. & Chandrasekhara, M. S. 1996 Compressibility effects on dynamic stall. Prog. Aero. Sci. 32, 523573.CrossRefGoogle Scholar
Choudhuri, P. G. & Knight, D. D. 1996 Effects of compressibility, pitch rate, and Reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching aerofoil. J. Fluid Mech. 308, 195217.CrossRefGoogle Scholar
Collins, W. M. & Dennis, S. C. R. 1974 Symmetrical flow past a uniformly accelerated circular cylinder. J. Fluid Mech. 65, 461480.CrossRefGoogle Scholar
Currier, J. F. & Fung, K. Y. 1992 Analysis of the onset of dynamic stall. AIAA J. 30, 24692477.CrossRefGoogle Scholar
Freymuth, P. 1985 The vortex patterns of dynamic separation: a parametric and comparative study. Prog. Aero. Sci. 22, 161208.CrossRefGoogle Scholar
Gendrich, S. C., Koochesfahani, M. M. & Visbal, M. R. 1995 Effects of initial acceleration on the flow field development around rapidly pitching airfoils. Trans. ASME: J. Fluids Engng 117, 4549.Google Scholar
Huang, R. F. & Lin, C. L. 1995 Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J. 33, 13981403.CrossRefGoogle Scholar
Koochesfahani, M. M. & Smiljanovski, V. 1993 Initial acceleration effects on flow evolution around airfoils pitching to high angles of attack. AIAA J. 31, 15291531.CrossRefGoogle Scholar
Lesieur, M. & Metais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.CrossRefGoogle Scholar
Lin, J. C. M. & Pauley, L. L. 1996 Low-Reynolds-number separation on an airfoil. AIAA J. 34, 15701577.CrossRefGoogle Scholar
Lugt, H. J. & Haussling, H. J. 1978 The acceleration of thin cylindrical bodies in a viscous fluid. J. Appl. Mech. 45, 16.CrossRefGoogle Scholar
Mathaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991 Selective decay and coherent vortices in two-dimensional incompressible turbulence. Phys. Rev. Lett. 66, 27312734.CrossRefGoogle Scholar
McCroskey, W. J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 24, 285311.CrossRefGoogle Scholar
Mehta, U. B. & Lavan, Z. 1975 Starting vortex, separation bubbles and stall: a numerical study of laminar unsteady flow around an airfoil. J. Fluid Mech. 67, 227256.CrossRefGoogle Scholar
Morikawa, K. & Grönig, H. 1995 Formation and structure of vortex systems around a translating and oscillating airfoil. Z. Flugwiss. Weltraumforsch 19, 391396.Google Scholar
Nair, M. T. 1998 Accurate numerical simulation of two-dimensional unsteady incompressible flows. PhD Thesis, Dept. Aero. Engng, Indian Institute of Technology Kanpur, India.Google Scholar
Nair, M. T. & Sengupta, T. K. 1997 a Unsteady flow past elliptic cylinders. J. Fluids Struct. 11, 555595.CrossRefGoogle Scholar
Nair, M. T & Sengupta, T. K. 1997 b Accelerated incompressible flow past aerofoils. Proc. 7th Asian Congress of Fluid Mechanics Madras, India, Dec. 1997.Google Scholar
Nair, M. T. & Sengupta, T. K. 1998 Orthogonal grid generation for Navier-Stokes computations. Intl J. Numer. Meth. Fluids 28, 215224.Google Scholar
Nair, M. T., Sengupta, T. K. & Chauhan, U. S. 1998 Flow past rotating cylinders at high Reynolds numbers using higher order upwind scheme. Computers Fluids 27 (1), 4770.CrossRefGoogle Scholar
Ohmi, K., Coutanceau, M., Loc, T. P. & Dulieu, A. 1991 Further experiments on vortex formation around an oscillating and translating airfoil at large incidences. J. Fluid Mech. 225, 607630.CrossRefGoogle Scholar
Perry, A. E., Chong, M. S. & Lim, T. T. 1982 The vortex shedding process behind two-dimensional bluff bodies. J. Fluid Mech. 116, 7790.CrossRefGoogle Scholar
Ramiz, M. A. & Acharya, M. 1992 Detection of flow state in an unsteady separating flow. AIAA J. 30, 117123.CrossRefGoogle Scholar
Rayleigh, Lord 1911 On the motion of solid bodies through viscous liquids. Phil. Mag. (6) 21, 697711.CrossRefGoogle Scholar
Sarpkaya, T. 1991 Nonimpulsively started steady flow about a circular cylinder. AIAA J. 29, 12831289.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary Layer Theory, VII edn. McGraw Hill.Google Scholar
Sengupta, T. K. 2004 Fundamentals of Computational Fluid Dynamics. Universities Press, Hyderabad, India.Google Scholar
Sengupta, T. K. & Dipankar, A. 2005 Subcritical instability on the attachment-line of an infinite swept wing. J. Fluid Mech. 529, 147171.CrossRefGoogle Scholar
Sengupta, T. K., Ganeriwal, G. & De, S. 2003 Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677694.Google Scholar
Sengupta, T. K., Vikas, V. & Johri, A. 2006 An improved method for calculating flow past flapping and hovering airfoils. Theor. Comput. Fluid Dyn. 19, 417440.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Parts 1-3: Coherent structures. Q. Appl. Maths 45, 561584.Google Scholar
Soria, J., New, T. H., Lim, T. T. & Parker, K. 2003 Multigrid CCDPIV measurements of accelerated flow past an airfoil at an angle of attack of 30°. Expl Therm. Fluid Sci. 27, 667676.CrossRefGoogle Scholar
Stokes, G. G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Trans. Camb. Phil. Soc. 9, 8106.Google Scholar
Stuart, J. T. 1963 Unsteady boundary layers. In Laminar Boundary Layers (ed. Rosenhead, L.). Clarendon Press.Google Scholar
Sugavanam, A. & Wu, J. C. 1982 Numerical study of separated turbulent flow over airfoils. AIAA J. 20, 464470.Google Scholar
Zaman, K. B. M. Q., McKinzie, D. J. & Rumsey, C. L. 1989 A natural low-frequency oscillation of the flow over an airfoil near stalling conditions. J. Fluid Mech. 202, 403442.CrossRefGoogle Scholar