Skip to main content Accessibility help
Hostname: page-component-65dc7cd545-fz4lj Total loading time: 0.292 Render date: 2021-07-25T13:17:07.747Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Water entry of spinning spheres

Published online by Cambridge University Press:  14 April 2009

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail address:


The complex hydrodynamics of water entry by a spinning sphere are investigated experimentally for low Froude numbers. Standard billiard balls are shot down at the free surface with controlled spin around one horizontal axis. High-speed digital video sequences reveal unique hydrodynamic phenomena which vary with spin rate and impact velocity. As anticipated, the spinning motion induces a lift force on the sphere and thus causes significant curvature in the trajectory of the object along its descent, similar to a curveball pitch in baseball. However, the splash and cavity dynamics are highly altered for the spinning case compared to impact of a sphere without spin. As spin rate increases, the splash curtain and cavity form and collapse asymmetrically with a persistent wedge of fluid emerging across the centre of the cavity. The wedge is formed as the sphere drags fluid along the surface, due to the no-slip condition; the wedge crosses the cavity in the same time it takes the sphere to rotate one-half a revolution. The spin rate relaxation time plateaus to a constant for tangential velocities above half the translational velocity of the sphere. Non-dimensional time to pinch off scales with Froude number as does the depth of pinch-off; however, a clear mass ratio dependence is noted in the depth to pinch off data. A force model is used to evaluate the lift and drag forces on the sphere after impact; resulting forces follow similar trends to those found for spinning spheres in oncoming flow, but are altered as a result of the subsurface air cavity. Images of the cavity and splash evolution, as well as force data, are presented for a range of spin rates and impact speeds; the influence of sphere density and diameter are also considered.

Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below.


Abelson, H. I. 1970 Pressure measurements in the water-entry cavity. J. Fluid Mech. 44, 129144.CrossRefGoogle Scholar
Alaways, L. W. & Hubbard, M. 2001 Experimental determination of baseball spin and lift. J. Sports Sci. 19, 349358.CrossRefGoogle Scholar
Barkla, H. M. & Auchterlonie, L. J. 1971 The Magnus or Robins effect on rotating spheres. J. Fluid Mech. 47, 437447.CrossRefGoogle Scholar
Bearman, P. W. & Harvey, J. K. 1976 Golf ball aerodynamics. Aeronaut. Q. 27, 112122.CrossRefGoogle Scholar
Bell, G. E. 1924 On the impact of a solid sphere with a fluid surface. Phil. Mag. 48, 753764.CrossRefGoogle Scholar
Bergmann, R., van der Meer, D., Stijnman, M., Sandtke, M., Prosperetti, A. & Lohse, D. 2006 Giant bubble pinch-off. Phys. Rev. Lett. 96, 154505–4.CrossRefGoogle Scholar
Birkhoff, G. & Isaacs, R. 1951 Transient cavities in air–water entry. NAVORD Report No. 1490.Google Scholar
Blevins, R. D. 1984 Applied Fluid Dyanmics Handbook. Van Nostrand Reinhold Co.Google Scholar
Davies, J. M. 1949 The aerodynamics of golf balls. J. Appl. Phys. 20, 821828.CrossRefGoogle Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.CrossRefGoogle Scholar
Gaudet, S. 1998 Numerical simulation of circular disks entering the free surface of a fluid. Phy. Fluids 10, 24892499.CrossRefGoogle Scholar
Gilbarg, D. & Anderson, R. A. 1948 Influence of atmospheric pressure on the phenomena accompanying the entry of spheres into water. J. Appl. Phys. 19, 127139.CrossRefGoogle Scholar
Glasheen, J. W. & McMahon, T. A. 1996 Vertical water entry of disks at low Froude numbers. Phys. Fluids 8, 20782083.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C. 2005 Vortex-induced vibrations of a sphere. J. Fluid Mech. 531, 1147.CrossRefGoogle Scholar
Grumstrup, T., Keller, J. B. & Belmonte, A. 2007 Cavity ripples observed during the impact of solid objects into liquids. Phys. Rev. Lett. 99, 114502.CrossRefGoogle Scholar
von Karman, T. 1929 The impact on seaplane floats during landing. Technical Notes 321. National Advisory Committee for Aeronautics, Aerodynamic Institute of the Technical High School, Aachen.Google Scholar
Kornhauser, M. 1964 Structural Effects of Impact, Spartan Books, Inc., Baltimore, MD.Google Scholar
Lee, M., Longoria, R. G. & Wilson, D. E. 1997 Cavity dynamics in high-speed water entry. Phys. Fluids 9, 540.CrossRefGoogle Scholar
Lohse, D., Bergmann, R., Mikkelsen, R., Zeilstra, C., van der Meer, D., Versluis, M., van der Weele, K., van der Hoef, M. & Kuipers, H. 2004 Impact on soft sand: void collapse and jet formation. Phys. Rev. Lett. 93, 198003.CrossRefGoogle ScholarPubMed
Maccoll, J. W. 1928 Aerodynamics of a spinning sphere. J. R. Aeronaut. Soc. 32 (213), 777798.CrossRefGoogle Scholar
May, A. 1951 Effect of surface condition of a sphere on its water-entry cavity. J. Appl. Phys. 22, 12191222.CrossRefGoogle Scholar
May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 23, 13621372.CrossRefGoogle Scholar
May, A. 1975 Water entry and the cavity-running behaviour of missiles. Final. Naval Surface Weapons Center White Oak Laboratory, Silver Springs, MD.Google Scholar
May, A. & Hoover, W. R. 1963 A study of the water-entry cavity. Unclassified NOLTR 63-264. United States Naval Ordinance Laboratory, White Oak, MD.Google Scholar
May, A. & Woodhull, J. C. 1948 Drag coefficients of steel spheres entering water vertically. J. Appl. Phys. 19, 11091121.CrossRefGoogle Scholar
May, A. & Woodhull, J. C. 1950 The virtual mass of a sphere entering water vertically. J. App. Phys. 21, 12851289.CrossRefGoogle Scholar
Mehta, R. D. 1985 Aerodynamics of sports balls. Annu. Rev. Fluid Mech. 17, 151189.CrossRefGoogle Scholar
Moghisi, M. & Squire, P. T. 1981 An experimental investigation of the initial force of impact on a sphere striking a liquid surface. J. Fluid Mech. Digital Arch. 108, 133146.CrossRefGoogle Scholar
Newton, I. 1671 New theory about light and colors. Phil. Trans. R. Soc. 6, 3078.Google Scholar
Raffel, M., Willert, C., Willert, C. E. & Kompenhans, S. 1998 Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
Richardson, E. G. 1948 The impact of a solid on a liquid surface. Proc. Phys. Soc. 4, 352367.CrossRefGoogle Scholar
Robbins, B. 1742 New Principles of Gunnery. Richmond (republished by Richmond in 1972, first printed by ed. Hutton, A).Google Scholar
Rosellini, L., Hersen, F., Clanet, C. & Bocquet, L. 2005 Skipping stones. J. Fluid Mech. 543, 137146.CrossRefGoogle Scholar
Shi, H.-H., Itoh, M. & Takami, T. 2000 Optical observation of the supercavitation induced by high-speed water entry. J. Fluids Engng 122 (4), 806810.CrossRefGoogle Scholar
Smits, A. J. & Smith, D. R. 1994 A New Aerodynamic Model of a Golf Ball in Flight. E. and F. N. Spon.Google Scholar
Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Takano, Y. 2004 Impact jetting by a solid sphere. J. Fluid Mech. 499, 139148.CrossRefGoogle Scholar
Truscott, T. T. & Techet, A. H. 2006 Cavity formation in the wake of a spinning sphere impacting the free surface. Phys. Fluids 18, 091113.CrossRefGoogle Scholar
Watts, R. G. & Ferrer, R. 1987 The lateral force on a spinning sphere: aerodynamics of a curveball. Am. J. Phys. 55, 4044.CrossRefGoogle Scholar
Worthington, A. M. & Cole, R. S. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. Ser. A (Containing Papers of a Mathematical or Physical Character) 189, 137148.CrossRefGoogle Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Zhao, R. & Faltinsen, O. M. 1993 Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593612.CrossRefGoogle Scholar
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Water entry of spinning spheres
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Water entry of spinning spheres
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Water entry of spinning spheres
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *