Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-d2wc8 Total loading time: 0.382 Render date: 2021-10-15T21:58:59.299Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A two-phase flow model of sediment transport: transition from bedload to suspended load

Published online by Cambridge University Press:  22 August 2014

Filippo Chiodi
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France
Philippe Claudin
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France
Bruno Andreotti*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes, (PMMH UMR 7636 ESPCI – CNRS – University Paris Diderot – University P. M. Curie) 10 rue Vauquelin, 75005 Paris, France
*
Email address for correspondence: andreotti@pmmh.espci.fr

Abstract

The transport of dense particles by a turbulent flow depends on two dimensionless numbers. Depending on the ratio of the shear velocity of the flow to the settling velocity of the particles (or the Rouse number), sediment transport takes place in a thin layer localized at the surface of the sediment bed (bedload) or over the whole water depth (suspended load). Moreover, depending on the sedimentation Reynolds number, the bedload layer is embedded in the viscous sublayer or is larger. We propose here a two-phase flow model able to describe both viscous and turbulent shear flows. Particle migration is described as resulting from normal stresses, but is limited by turbulent mixing and shear-induced diffusion of particles. Using this framework, we theoretically investigate the transition between bedload and suspended load.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. B. & Jackson, R. 1967 A fluid mechanical description of fluidized beds – equation of motion. Ind. Engng Chem. Fundam. 6, 527539.CrossRefGoogle Scholar
Andreotti, B., Barrat, J.-L. & Heussinger, C. 2012 Shear flow of non-Brownian suspensions close to jamming. Phys. Rev. Lett. 109, 105901.CrossRefGoogle ScholarPubMed
Andreotti, B. & Claudin, P. 2013 Aeolian and subaqueous bedforms in shear flows. Phil. Trans. R. Soc. Lond. A 371, 20120364.CrossRefGoogle ScholarPubMed
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media, Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Aussillous, P., Chauchat, J., Pailha, M., Médale, M. & Guazzelli, E. 2013 Investigation of the mobile granular layer in bedload transport by laminar shearing flows. J. Fluid Mech. 736, 594615.CrossRefGoogle Scholar
Bagnold, R. A. 1956 The flow of cohesionless grains in fluids. Phil. Trans. R. Soc. Lond. 249, 235297.CrossRefGoogle Scholar
Berzi, D. 2011 Analytical solution of collisional sheet flows. J. Hydraul. Engng 137, 12001207.CrossRefGoogle Scholar
Berzi, D. 2013 Transport formula for collisional sheet flows with turbulent suspension. J. Hydraul. Engng 139, 359363.CrossRefGoogle Scholar
Bonnoit, C., Darnige, T., Clément, E. & Lindner, A. 2010 Inclined plane rheometry of a dense granular suspension. J. Rheol. 54, 6579.CrossRefGoogle Scholar
Boyer, F., Guazzelli, E. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Camemen, B. & Larson, M. 2005 A general formula for non-cohesive bed-load sediment transport. Estuar. Coast. 63, 249260.CrossRefGoogle Scholar
Capart, H. & Fraccarollo, L. 2011 Transport layer structure in intense bed-load. Geophys. Res. Lett. 38, L20402.CrossRefGoogle Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17, 103301.CrossRefGoogle Scholar
Celik, I. & Rodi, W. 1988 Modeling suspended sediment transport in non-equilibrium situations. J. Hydraul. Engng 114, 11571191.CrossRefGoogle Scholar
Charru, F. 2006 Selection of the ripple length on a granular bed. Phys. Fluids 18, 121508.CrossRefGoogle Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469493.CrossRefGoogle Scholar
Charru, F. & Hinch, E. J. 2006 Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow. J. Fluid Mech. 550, 111121.CrossRefGoogle Scholar
Charru, F. & Mouilleron-Arnould, H. 2002 Instability of a bed of particles sheared by a viscous flow. J. Fluid Mech. 452, 303323.CrossRefGoogle Scholar
Charru, F., Mouilleron-Arnould, H. & Eiff, O. 2004 Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 5580.CrossRefGoogle Scholar
Cheng, N. S. 2004 Analysis of bed load transport in laminar flows. Adv. Water Resour. 27, 937942.CrossRefGoogle Scholar
Coleman, N. L. 1970 Flume studies of the sediment transfer coefficient. Water Resour. Res. 6, 801809.CrossRefGoogle Scholar
Cowen, E. A., Dudley, R. D., Liao, Q., Variano, E. A. & Liu, P. L.-F. 2010 An in situ borescopic quantitative imaging profiler for the measurement of high concentration sediment velocity. Exp. Fluids 49, 7788.CrossRefGoogle Scholar
van Driest, E. R. 1956 On turbulent flow near a wall. J. Aero. Sci. 23, 10071011.CrossRefGoogle Scholar
Durán, O., Andreotti, B. & Claudin, P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24, 103306.CrossRefGoogle Scholar
Eckstein, E. C., Bailey, D. G. & Shapiro, A. H. 1977 Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 79, 191208.CrossRefGoogle Scholar
Einstein, H. A.1950 The bed-load function for sedimentation transportation in open channel flows. Technical Bulletin 1026, pp. 1–71, US Department of Agriculture.Google Scholar
Fall, A., Lemaître, A., Bertrand, F., Bonn, D. & Ovarlez, G. 2010 Continuous and discontinuous shear thickening in granular suspension. Phys. Rev. Lett. 105, 268303.CrossRefGoogle Scholar
Ferguson, R. I. & Church, M. 2004 A simple universal equation for grain settling velocity. J. Sedim. Res. 74, 933937.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.CrossRefGoogle Scholar
Foss, D. R. & Brady, J. F. 2000 Structure, diffusion, and rheology of Brownian suspensions by Stokesian dynamics simulation. J. Fluid Mech. 407, 167200.CrossRefGoogle Scholar
GDR MiDi,   2004 On dense granular flows. Eur. Phys. J. E 14, 341365.CrossRefGoogle Scholar
van Hecke, M. 2010 Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condens. Matter 22, 033101.Google ScholarPubMed
Jackson, R. 1997 Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid. Chem. Engng Sci. 52, 24572469.CrossRefGoogle Scholar
Jackson, R. 2000 The Dynamics of Fluidized Particles. Cambridge University Press.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.CrossRefGoogle ScholarPubMed
Lajeunesse, E., Malverti, L. & Charru, F. 2010 Bedload transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, F04001.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987 Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177, 109131.CrossRefGoogle Scholar
Le Louvetel-Poilly, J., Bigillon, F., Doppler, D., Vinkovic, I. & Champagne, J.-Y. 2009 Experimental investigation of ejections and sweeps involved in particle suspension. Water Resour. Res. 45, W02416.Google Scholar
Lerner, E., Düring, G. & Wyart, M. 2012 A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc. Natl Acad. Sci. USA 109, 47984803.CrossRefGoogle ScholarPubMed
Marchioli, C., Armenio, V., Salvetti, M. V. & Soldati, A. 2006 Mechanisms for deposition and resuspension of heavy particles in turbulent flow over wavy interfaces. Phys. Fluids 18, 025102.CrossRefGoogle Scholar
Meyer-Peter, E. & Müller, R.1948 Formulas for bed load transport. In Proceedings 2nd Meeting, IAHR, Stockholm, Sweden, pp. 39–64.Google Scholar
Nielsen, P. 1992 Coastal Bottom Boundary Layers and Sediment Transport. World Scientific.CrossRefGoogle Scholar
Nnadi, F. N. & Wilson, K. C. 1992 Motion of contact-load particles at high shear stress. J. Hydraul. Engng 118, 16701684.CrossRefGoogle Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Ouriemi, M., Aussillous, P. & Guazzelli, E. 2009 Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows. J. Fluid Mech. 636, 295319.CrossRefGoogle Scholar
Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense suspension of non-colloidal particles through magnetic resonance imaging. J. Rheol. 50, 259292.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Revil-Baudard, T. & Chauchat, J. 2013 A two-phase model for sheet flow regime based on dense granular flow rheology. J. Geophys. Res. Oceans 118, 619634.CrossRefGoogle Scholar
Ribberink, J. S. 1998 Bed-load transport for steady flows and unsteady oscillatory flows. Coast. Engng 34, 5882.CrossRefGoogle Scholar
van Rijn, L. C. 1984 Sediment transport, part I: bed-load transport. J. Hydraul. Engng 110, 14311456.CrossRefGoogle Scholar
Sumer, B. M., Kozakiewicz, A., Fredsøe, J. & Deigaard, R. 1996 Velocity and concentration profiles in sheet-flow layer of movable bed. J. Hydraul. Engng 122, 549558.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109, 118305.CrossRefGoogle ScholarPubMed
Wong, M. & Parker, G. 2006 Reanalysis and correction of bed-load relation Meyer-Peter and Müller using their own database. J. Hydraul. Engng 132, 11591168.CrossRefGoogle Scholar
Wyart, M., Nagel, S. R. & Witten, T. A. 2005 Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett. 72, 486492.CrossRefGoogle Scholar
Yalin, S. 1963 An expression for bed-load transportation. J. Hydraul. Div. ASCE 89, 221250.Google Scholar
37
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A two-phase flow model of sediment transport: transition from bedload to suspended load
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A two-phase flow model of sediment transport: transition from bedload to suspended load
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A two-phase flow model of sediment transport: transition from bedload to suspended load
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *