Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-cssqh Total loading time: 1.412 Render date: 2021-06-16T12:14:43.573Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A three-equation model for thin films down an inclined plane

Published online by Cambridge University Press:  08 September 2016

G. L. Richard
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse CNRS, UPS IMT, F-31062 Toulouse CEDEX 9, France
C. Ruyer-Quil
Affiliation:
Institut Universitaire de France, Université de Savoie Mont-Blanc, CNRS, LOCIE 73000 Chambéry, France
J. P. Vila
Affiliation:
Institut de Mathématiques de Toulouse, UMR5219, Université de Toulouse, CNRS, INSA, F-31077 Toulouse, France
Corresponding

Abstract

We derive a new model for thin viscous liquid films down an inclined plane. With an asymptotic expansion in the long-wave limit, the Navier–Stokes equations and the work–energy theorem are averaged over the fluid depth. This gives three equations for the mass, momentum and energy balance which have the mathematical structure of the Euler equations of compressible fluids with relaxation source terms, diffusive and capillary terms. The three variables of the model are the fluid depth, the average velocity and a third variable called enstrophy, related to the variance of the velocity. The equations are numerically solved by classical schemes which are known to be reliable and robust. The model gives satisfactory results both for the neutral stability curves and for the depth profiles of wavy films produced by a periodical forcing or by a random noise perturbation. The numerical calculations agree fairly well with experimental measurements of Liu & Gollub (Phys. Fluids, vol. 6, 1994, pp. 1702–1712). The calculation of the wall shear stress below the waves indicates a flow reversal at the first depth minimum downstream of the main hump, in agreement with experiments of Tihon et al. (Exp. Fluids, vol. 41, 2006, pp. 79–89).

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abderrahmane, H. A. & Vatistas, G. H. 2007 Improved two-equation model for thin layer fluid flowing down an inclined plane problem. Phys. Fluids 19, 098106.CrossRefGoogle Scholar
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1985 Wave formation on vertical falling liquid films. Intl J. Multiphase Flow 11 (5), 607627.CrossRefGoogle Scholar
Bach, P. & Villadsen, J. 1984 Simulation of the vertical flow of a thin, wavy film using a finite-element method. Intl J. Mass Transfer 27 (6), 815827.CrossRefGoogle Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.CrossRefGoogle Scholar
Benney, D. J. 1966 Long waves on liquid films. J. Math. Phys. 45, 150155.CrossRefGoogle Scholar
Bresch, D., Couderc, F., Noble, P. & Vila, J. P. 2016 A generalization of the quantum Bohm identity: hyperbolic CFL condition for Euler–Korteweg equations. C. R. Math. 354 (1), 3943.CrossRefGoogle Scholar
Brevdo, L., Laure, P., Dias, F. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.CrossRefGoogle Scholar
Chakraborty, S., Nguyen, P.-K., Ruyer-Quil, C. & Bontozoglou, V. 2014 Extreme solitary waves on falling liquid films. J. Fluid Mech. 745, 564591.CrossRefGoogle Scholar
Chang, H. -C., Demekhin, E. A. & Kalaidin, E. 1996 Simulation of noise-driven dynamics on a falling film. AIChE J. 42 (6), 15531568.CrossRefGoogle Scholar
Chang, H. -C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.CrossRefGoogle Scholar
Demekhin, E. A., Demekhin, I. A. & Shkadov, V. Y. 1983 Solitons in viscous films flowing down a vertical wall. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 4, 916.Google Scholar
Gavrilyuk, S. L. & Perepechko, Y. V. 1998 Variational approach to constructing hyperbolic models of two-velocity media. Prikl. Mekh. Tekh. Fiz. 39 (5), 3954.Google Scholar
Joo, S. W., Davis, S. H. & Bankoff, S. G. 1991 Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers. J. Fluid Mech. 230, 117146.CrossRefGoogle Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films. Springer.CrossRefGoogle Scholar
Kapitza, P. L. 1948a Wave flow of thin layers of a viscous fluid: Part I. Free flow. Zh. Exper. Teor. Fiz. 18, 318; (in Russian).Google Scholar
Kapitza, P. L. 1948b Wave flow of thin layers of a viscous fluid: Part II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Exper. Teor. Fiz. 18, 1928; (in Russian).Google Scholar
Kapitza, P. L. & Kapitza, S. P. 1949 Wave flow of thin viscous liquid films. Zh. Exper. Teor. Fiz. 19, 105.Google Scholar
Kuramoto, Y. & Tsuzuki, T. 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55 (2), 356369.CrossRefGoogle Scholar
Lavalle, G., Vila, J. P., Blanchard, G., Laurent, C. & Charru, F. 2015 A numerical reduced model for thin liquid films sheared by a gas flow. J. Comput. Phys. 301, 119140.CrossRefGoogle Scholar
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6, 17021712.CrossRefGoogle Scholar
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.CrossRefGoogle Scholar
Luchini, P. & Charru, F. 2010 Consistent section-averaged equations of quasi-one-dimensional laminar flow. J. Fluid Mech. 656, 337341.CrossRefGoogle Scholar
Malamataris, N. A., Vlachogiannis, M. & Bontozoglou, V. 2002 Solitary waves on inclined films: flow structure and binary interactions. Phys. Fluids 14 (3), 10821094.CrossRefGoogle Scholar
Mudunuri, R. R. & Balakotaiah, V. 2006 Solitary waves on thin falling films in the very low forcing frequency limit. AIChE J. 52 (12), 39954003.CrossRefGoogle Scholar
Nakoryakov, V. E., Pokusaev, B. G., Alekseenko, S. V. & Orlov, V. V. 1977 Instantaneous velocity profile in a wavy fluid film. Inzh.-Fiz. Zh. 33 (3), 399404.Google Scholar
Nguyen, L. T. & Balakotaiah, V. 2000 Modeling and experimental studies of wave evolution on free falling viscous films. Phys. Fluids 12 (9), 22362256.CrossRefGoogle Scholar
Noble, P. & Vila, J. P. 2013 Thin power-law film down an inclined plane: consistent shallow-water models and stability under large-scale perturbations. J. Fluid Mech. 735, 2960.CrossRefGoogle Scholar
Noble, P. & Vila, J. P. 2014 Stability theory for difference approximations of Euler Korteweg equations and application to thin film flows. SIAM J. Numer. Anal. 52 (6), 27702791.CrossRefGoogle Scholar
Nosoko, T. & Miyara, A. 2004 The evolution and subsequent dynamics of waves on a vertically falling liquid film. Phys. Fluids 16 (4), 11181126.CrossRefGoogle Scholar
Novbari, E. & Oron, A. 2009 Energy integral method model for the nonlinear dynamics of an axisymetric thin liquid film falling on a vertical cylinder. Phys. Fluids 21, 062107.CrossRefGoogle Scholar
Ooshida, T. 1999 Surface equation of falling film flows with moderate Reynolds number and large but finite Weber number. Phys. Fluids 11 (11), 32473269.Google Scholar
Ostapenko, V. V. 2014 Conservation laws of shallow water theory and the Galilean relativity principle. J. Appl. Ind. Math. 8 (2), 274286.CrossRefGoogle Scholar
Pumir, A., Manneville, P. & Pomeau, Y. 1983 On solitary waves running down an inclined plane. J. Fluid Mech. 135, 2750.CrossRefGoogle Scholar
Ramaswamy, B., Chippada, S. & Joo, S. W. 1996 A full-scale numerical study of interfacial instabilities in thin-film flows. J. Fluid Mech. 325, 163194.CrossRefGoogle Scholar
Richard, G. L. & Gavrilyuk, S. L. 2012 A new model of roll waves: comparison with Brock’s experiments. J. Fluid Mech. 698, 374405.CrossRefGoogle Scholar
Richard, G. L. & Gavrilyuk, S. L. 2013 The classical hydraulic jump in a model of shear shallow-water flows. J. Fluid Mech. 725, 492521.CrossRefGoogle Scholar
Roberts, A. J. 1996 Low-dimensional models of thin film fluid dynamics. Phys. Lett. A 212, 6371.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modelling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modelling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2005 On the speed of solitary waves running down a vertical wall. J. Fluid Mech. 531, 181190.CrossRefGoogle Scholar
Salamon, T. R., Armstrong, R. C. & Brown, R. A. 1994 Traveling waves on vertical films: numerical analysis using the finite element method. Phys. Fluids 6, 22022220.CrossRefGoogle Scholar
Shkadov, V. Y. 1967 Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 1, 4351; (English translation in Fluid Dyn., 2, 29–34), 1970 (Faraday Press, NY).Google Scholar
Sivashinsky, G. I. 1977 Nonlinear analysis of hydrodynamic instability in laminar flames. I: derivation of basic equations. Acta Astronaut. 4 (11), 11771206.CrossRefGoogle Scholar
Teshukov, V. M. 2007 Gas-dynamics analogy for vortex free-boundary flows. J. Appl. Mech. Tech. Phys. 48 (3), 303309.CrossRefGoogle Scholar
Tihon, J., Serifi, K., Argyriadi, K. & Bontozoglou, V. 2006 Solitary waves on inclined films: their characteristics and the effects on wall shear stress. Exp. Fluids 41, 7989.CrossRefGoogle Scholar
Trifonov, Y. Y. 2012 Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations. Fluid Dyn. Res. 44, 031418.CrossRefGoogle Scholar
Usha, R. & Uma, B. 2004 Modeling of stationary waves on a thin viscous film down an inclined plane at high Reynolds numbers and moderate Weber numbers using energy integral method. Phys. Fluids 16 (7), 26792696.CrossRefGoogle Scholar
Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.CrossRefGoogle Scholar
15
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A three-equation model for thin films down an inclined plane
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A three-equation model for thin films down an inclined plane
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A three-equation model for thin films down an inclined plane
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *