Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-zhxtg Total loading time: 0.209 Render date: 2021-05-08T20:22:23.161Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers

Published online by Cambridge University Press:  23 November 2007

PETER P. SULLIVAN
Affiliation:
National Center for Atmospheric Research, Boulder, CO 80307, USA
JAMES C. McWILLIAMS
Affiliation:
Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, CA 90095-1565, USA
W. KENDALL MELVILLE
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0213, USA

Abstract

The wind-driven stably stratified mid-latitude oceanic surface turbulent boundary layer is computationally simulated in the presence of a specified surface gravity-wave field. The gravity waves have broad wavenumber and frequency spectra typical of measured conditions in near-equilibrium with the mean wind speed. The simulation model is based on (i) an asymptotic theory for the conservative dynamical effects of waves on the wave-averaged boundary-layer currents and (ii) a boundary-layer forcing by a stochastic representation of the impulses and energy fluxes in a field of breaking waves. The wave influences are shown to be profound on both the mean current profile and turbulent statistics compared to a simulation without these wave influences and forced by an equivalent mean surface stress. As expected from previous studies with partial combinations of these wave influences, Langmuir circulations due to the wave-averaged vortex force make vertical eddy fluxes of momentum and material concentration much more efficient and non-local (i.e. with negative eddy viscosity near the surface), and they combine with the breakers to increase the turbulent energy and dissipation rate. They also combine in an unexpected positive feedback in which breaker-generated vorticity seeds the creation of a new Langmuir circulation and instigates a deep strong intermittent downwelling jet that penetrates through the boundary layer and increases the material entrainment rate at the base of the layer. These wave effects on the boundary layer are greater for smaller wave ages and higher mean wind speeds.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below.

References

Alves, J. G. M., Banner, M. L. & Young, I. R. 2003 Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr. 33, 13011323.2.0.CO;2>CrossRefGoogle Scholar
Ardhuin, F. & Jenkins, A. D. 2006 On the interaction of surface waves and upper ocean turbulence. J. Phys. Oceanogr. 36, 551557.CrossRefGoogle Scholar
Armfield, S. & Street, R. 1999 The fractional step method for the Navier–Stokes equations on staggered grids: The accuracy of three variations. J. Comput. Phys. 153, 660665.CrossRefGoogle Scholar
Banner, M. L. 1990 Equilibrium spectra of wind waves. J. Phys. Oceanogr. 20, 966984.2.0.CO;2>CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech. 364, 115145.CrossRefGoogle Scholar
Belcher, S. E. & Vassilicos, J. C. 1997 Breaking waves and the equilibrium range of wind–wave spectra. J. Fluid Mech. 342, 377401.CrossRefGoogle Scholar
Chini, G. P. & Leibovich, S. 2003 Resonant Langmuir-circulation internal-wave interaction. Part 1. Internal wave reflection. J. Fluid Mech. 495, 3555.CrossRefGoogle Scholar
Craig, P. D. & Banner, M. L. 1994 Modeling wave-enhanced turbulence in the ocean surface layer. J. Phys. Oceanogr. 24, 25462559.2.0.CO;2>CrossRefGoogle Scholar
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73, 401426.CrossRefGoogle Scholar
Csanady, G. T. 1994 Vortex pair model of Langmuir circulation. J. Mar. Res. 52, 559581.CrossRefGoogle Scholar
Donelan, M. A. 1998 Air–water exchange processes. In Physical Processes in Lakes and Oceans, Coastal and Estuarine Studies, vol. 54, pp. 1936. American Geophysical Union.CrossRefGoogle Scholar
Donelan, M. A. 2001 A nonlinear dissipation function due to wave breaking. In Workshop on Ocean Wave Forcasting. European Centre for Medium Range Weather Forecasting, Reading, England.Google Scholar
Donelan, M. A., Hamilton, J. & Hui, W. H. 1985 Directional spectra of wind-generated waves. Phil. Trans. R. Soc. Lond. A 315, 509562.CrossRefGoogle Scholar
Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. & Saltzman, E. S. 2004 On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306.CrossRefGoogle Scholar
Donelan, M. A., Longuet-Higgins, M. S. & Turner, J. S. 1972 Whitecaps. Nature 239, 449451.CrossRefGoogle Scholar
Donelan, M. A. & Pierson, W. J. 1987 Radar scattering and equilibrium ranges in wind generated waves with applications to scatterometry. J. Geophys. Res. 92, 49715029.CrossRefGoogle Scholar
Drennan, W. M., Donelan, M. A., Terray, E. A. & Katsaros, K. B. 1996 Oceanic turbulence dissipation measurements in SWADE. J. Phys. Oceanogr. 26, 808815.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. 2004 Tropical cyclone energetics and structure. In Atmospheric Turbulence and Mesoscale Meteorology (ed. Fedorovich, E., Rotunno, R. & Stevens, B.), pp. 165191. Cambridge University Press.CrossRefGoogle Scholar
Emanuel, K. A. 1999 Thermodynamic control of hurricane intensity. Nature 401, 665669.CrossRefGoogle Scholar
Enstad, L. I., Nagaosa, R. & Alendal, G. 2006 Low shear turbulence structures beneath stress-driven interface with neutral and stable stratification. Phys. Fluids 18, 055106–1 055106–23.CrossRefGoogle Scholar
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A. & Edson, J. B. 2003 Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 16, 571591.2.0.CO;2>CrossRefGoogle Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.CrossRefGoogle Scholar
Gargett, A., Tejada-Martínez, A. E. & Grosch, C. E. 2004 Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science 306, 19251928.CrossRefGoogle Scholar
Gemmrich, J. R. 2005 On the occurrence of wave breaking. In 14th 'Aha Huliko'a Hawaiian Winter Workshop on Rogue Waves, pp. 123130. Office of Naval Research.Google Scholar
Gemmrich, J. R. & Farmer, D. M. 1999 Near-surface turbulence and thermal structure in a wind-driven sea. J. Phys. Oceanogr. 29, 480499.2.0.CO;2>CrossRefGoogle Scholar
Hara, T. & Belcher, S. E. 2002 Wind forcing in the equilibrium range of wind–wave spectra. J. Fluid Mech. 470, 223245.CrossRefGoogle Scholar
Kantha, L. H. & Clayson, C. A. 2004 On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling 6, 101124.CrossRefGoogle Scholar
Kawamura, T. 2000 Numerical investigation of turbulence near a sheared air-water interface. Part 2: Interaction of turbulent shear flow with surface waves. J. Mar. Sci. Technology 5, 161175.CrossRefGoogle Scholar
Kenyon, K. E. 1969 Stokes drift for random gravity waves. J. Geophys. Res. 74, 69916994.CrossRefGoogle Scholar
Klemp, J. & Durran, D. 1983 An upper boundary condition permitting internal gravity wave radiation in numercal mesoscale models. Mon. Wea. Rev. 11, 430444.2.0.CO;2>CrossRefGoogle Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press.CrossRefGoogle Scholar
Lamarre, E. & Melville, W. K. 1991 Air entrainment and dissipation in breaking waves. Nature 351, 469472.CrossRefGoogle Scholar
Large, W. G., McWilliams, J. C. & Doney, S. C. 1995 Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 32, 363403.CrossRefGoogle Scholar
Large, W. G. & Pond, S. 1982 Sensible and latent heat flux measurements over the ocean. J. Phys. Oceanogr. 12, 464484.2.0.CO;2>CrossRefGoogle Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Ann. Rev. Fluid Mech. 15, 391427.CrossRefGoogle Scholar
Lewis, D. M. & Belcher, S. E. 2004 Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313351.CrossRefGoogle Scholar
Li, M., Garrett, C. & Skyllingstad, E. 2005 A regime diagram for classifying turbulent large eddies in the upper ocean. Deep-Sea Res. I 52, 259278.CrossRefGoogle Scholar
Lin, C.-L., McWilliams, J. C., Moeng, C.-H. & Sullivan, P. P. 1996 Coherent structures and dynamics in a neutrally stratified planetary boundary layer flow. Phys. Fluids 8, 26262639.CrossRefGoogle Scholar
Liu, W. T., Katsaros, K. B. & Businger, J. A. 1979 Bulk parameterization of air–sea exchanges in heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci. 36, 17221735.2.0.CO;2>CrossRefGoogle Scholar
Loewen, M. R. & Melville, W. K. 1990 Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech. 2, 297299.Google Scholar
Longuet-Higgins, M. S. 1975 Integral properties of periodic gravity waves of finite amplitude. Proc. Roy. Soc. Lond. A 342, 157174.CrossRefGoogle Scholar
Makin, V. K., Kudryavtsev, V. N. & Mastenbroek, C. 1995 Drag of the sea surface. Boundary-Layer Met. 73, 159182.CrossRefGoogle Scholar
McWilliams, J. C. 1996 Modeling the oceanic general circulation. Annu. Rev. Fluid Mech. 28, 215248.CrossRefGoogle Scholar
McWilliams, J. C. & Huckle, E. 2006 Ekman layer rectification. J. Phys. Oceanogr. 36, 16461659.CrossRefGoogle Scholar
McWilliams, J. C. & Restrepo, J. M. 1999 The wave-driven ocean circulation. J. Phys. Oceanogr. 29, 25232540.2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C., Restrepo, J. R. & Lane, E. M. 2004 An asymptotic theory for the interaction of waves and currents in shallow coastal water. J. Fluid Mech. 511, 135178.CrossRefGoogle Scholar
McWilliams, J. C. & Sullivan, P. P. 2000 Vertical mixing by Langmuir circulations. Spill Sci. Technol. Bull. 6, 225237.CrossRefGoogle Scholar
McWilliams, J. C., Sullivan, P. P. & Moeng, C-H. 1997 Langmuir turbulence in the ocean. J. Fluid Mech. 334, 130.CrossRefGoogle Scholar
Mellor, G. L. & Yamada, T. 1982 Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851875.CrossRefGoogle Scholar
Melsom, A. & SÆtra, Ø. 2004 Effects of wave breaking on the near-surface profiles of velocity and turbulent kinetic energy. J. Phys. Oceanogr. 34, 490504.CrossRefGoogle Scholar
Melville, W. K. 1994 Energy dissipation by breaking waves. J. Phys. Oceanogr. 24, 20412049.2.0.CO;2>CrossRefGoogle Scholar
Melville, W. K. 1996 The role of wave breaking in air–sea interaction. Ann. Rev. Fluid Mech. 28, 279321.CrossRefGoogle Scholar
Melville, W. K. & Matusov, P. 2002 Distribution of breaking waves at the ocean surface. Nature 417, 5863.CrossRefGoogle Scholar
Melville, W. K., Veron, F. & White, C. J. 2002 The velocity field under breaking waves: coherent structures and turbulence. J. Fluid Mech. 454, 203233.CrossRefGoogle Scholar
Moeng, C-H. 1984 A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 20522062.2.0.CO;2>CrossRefGoogle Scholar
Moeng, C-H. & Rotunno, R. 1990 Vertical velocity skewness in the buoyancy-driven boundary layer. J. Atmos. Sci. 47, 11491162.2.0.CO;2>CrossRefGoogle Scholar
Moeng, C. H. & Wyngaard, J. C. 1989 Evaluation of turbulent transport and dissipation closures in second-order modeling. J. Atmos. Sci. 46, 23112330.2.0.CO;2>CrossRefGoogle Scholar
Nepf, H. M., Cowen, E. A., Kimmel, S. J. & Monismith, S. G. 1995 Longitudinal vortices beneath breaking waves. J. Geophys. Res. 100, 16,21116,221.CrossRefGoogle Scholar
Noh, Y., Min, H. S. & Raasch, S. 2004 Large eddy simulation of the ocean mixed layer: The effects of wave breaking and Langmuir circulation. J. Phys. Oceanogr. 34, 720735.2.0.CO;2>CrossRefGoogle Scholar
Phillips, O. M. 1977 Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.CrossRefGoogle Scholar
Phillips, W. R. C. 2002 Langmuir circulations beneath growing or decaying surface waves. J. Fluid Mech. 469, 317342.CrossRefGoogle Scholar
Pierson, W. J. & Moskowitz, L. 1964 A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res. 69, 51815190.CrossRefGoogle Scholar
Polton, J. A., Lewis, D. M. & Belcher, S. E. 2004 The role of wave-induced Coriolis–Stokes forcing on the wind-driven mixed layer. J. Phys. Oceanogr. 34, 23452358.Google Scholar
Powell, M. D., Vickery, P. J. & Reinhold, T. A. 2003 Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 422, 279283.CrossRefGoogle Scholar
Price, J. F., Weller, R. A. & Pinkel, R. 1986 Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91, 84118427.CrossRefGoogle Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.CrossRefGoogle Scholar
Rascale, N., Ardhuin, F. & Terray, E. A. 2006 Drift and mixing under the ocean surface: A coherent one-dimensional description with application to unstratified conditions. J. Geophys. Res. 111, C03016.Google Scholar
Scotti, A., Meneveau, C. & Lilly, D. K. 1993 Generalized Smagorinsky model for anisotropic grids. Phys. Fluids A 5, 23062308.CrossRefGoogle Scholar
Skyllingstad, E. 2005 Langmuir circulation. In Marine Turbulence: Theories, Observations, and Models (ed. Baumert, H. Z., Simpson, J. & Sündermann, J.), pp. 277282. Cambridge University Press.Google Scholar
Skyllingstad, E. D. & Denbo, D. W. 1995 An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res. 100, 85018522.CrossRefGoogle Scholar
Smyth, W. D., Skyllingstad, E. D., Crawford, G. B. & Wijesekera, H. 2002 Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dyn. 52, 104115.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2004 The oceanic boundary layer driven by wave breaking with stochastic variability. I: Direct numerical simulations. J. Fluid Mech. 507, 143174.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2005 Surface waves and ocean mixing: Insights from numerical simulations with stochastic surface forcing. In 14th 'Aha Huliko'a Hawaiian Winter Workshop on Rogue Waves, pp. 147–154.Google Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C-H. 1994 A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Met. 71, 247276.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C-H. 1996 A grid nesting method for large-eddy simulation of planetary boundary layer flows. Boundary-Layer Met. 80, 167202.CrossRefGoogle Scholar
Sullivan, P. P., Moeng, C-H., Stevens, B., Lenschow, D. H. & Mayor, S. D. 1998 Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55, 30423064.2.0.CO;2>CrossRefGoogle Scholar
Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahma, K. K., Williams, A. J. 3rd, Hwang, P. A. & Kitaigorodskii, S. A. 1996 Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 26, 792807.2.0.CO;2>CrossRefGoogle Scholar
Terray, E. A., Drennan, W. M. & Donelan, M. A. 1999 The vertical structure of shear and dissipation in the ocean surface layer. In Proc. Symp. on the Wind-Driven Air–Sea Interface—Electromagnetic and Acoustic Sensing, Wave Dynamics, and Turbulent Fluxes, pp. 239245. University of New South Wales, Sydney Australia.Google Scholar
ThorpeThorpe, S. A. Thorpe, S. A. 2004 Langmuir circulation. Ann. Rev. Fluid Mech. 36, 5579.CrossRefGoogle Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Tsai, W-T. 1998 A numerical study of the evolution and structure of a turbulent shear layer under a free surface. J. Fluid Mech. 354, 239276.CrossRefGoogle Scholar
Tsai, W-T. & Yue, D. K. P. 1996 Computation of nonlinear free-surface flows. Ann. Rev. Fluid Mech. 28, 249278.CrossRefGoogle Scholar
Wu, J. 1983 Sea-surface drift currents induced by wind and waves. J. Phys. Oceanogr. 13, 14411451.2.0.CO;2>CrossRefGoogle Scholar
Wu, J. 1988 Variations of whitecap coverage with wind stress and water temperature. J. Phys. Oceanogr. 18, 14481453.2.0.CO;2>CrossRefGoogle Scholar
Zhou, H. 1999 Numerical simulation of Langmuir circulations in a wavy domain and its comparison with the Craik-Leibovich theory. PhD thesis, Stanford University.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *