Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-17T17:38:31.110Z Has data issue: false hasContentIssue false

Suppression of flow reversals via manipulating corner rolls in plane Rayleigh–Bénard convection

Published online by Cambridge University Press:  11 August 2022

Chao-Ben Zhao
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Bo-Fu Wang
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Jian-Zhao Wu*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Kai Leong Chong*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Quan Zhou*
Affiliation:
Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
*
Email addresses for correspondence: jianzhao_wu@shu.edu.cn, klchong@shu.edu.cn, qzhou@shu.edu.cn
Email addresses for correspondence: jianzhao_wu@shu.edu.cn, klchong@shu.edu.cn, qzhou@shu.edu.cn
Email addresses for correspondence: jianzhao_wu@shu.edu.cn, klchong@shu.edu.cn, qzhou@shu.edu.cn

Abstract

In this paper, we report that reversals of the large-scale circulation in two-dimensional Rayleigh–Bénard (RB) convection can be suppressed by imposing sinusoidally distributed heating to the bottom plate. We examine how the frequency of flow reversals depends on the dimensionless wavenumber $k$ of the spatial temperature modulation with various modulation amplitude $A$. For sufficiently large $k$, the flow reversal frequency is close to that in the standard RB convection under uniform heating. However, when $k$ decreases, the frequency of flow reversal gradually becomes lower and can even be largely reduced. Furthermore, we examine the growth of the corner roll and the global flow structure based on Fourier mode decomposition, and reveal that the size of the corner roll diminishes as the wavenumber decreases. The reason is that the regions occupied by the cold phase can absorb heat from the hot plumes and thus lower their temperature, which reduces the corner roll's kinetic energy input provided by the buoyancy force, and weakens the feeding process of the corner rolls. This results in the locking of the corner roll into a smaller region near the corner, making it harder for a reversal to occur. Using the concept of horizontal convection caused by non-uniform heating, we find a relevant parameter $k/A$ to describe briefly how the reversal frequency depends on wavenumber and modulation amplitude. The present work provides a new way to control the flow reversals in RB convection through modifying temperature boundary conditions.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abtahi, A. & Floryan, J. 2017 Natural convection and thermal drift. J.Fluid Mech. 826, 553582.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Araujo, F.F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084502.CrossRefGoogle ScholarPubMed
Assaf, M., Angheluta, L. & Goldenfeld, N. 2011 Rare fluctuations and large-scale circulation cessations in turbulent convection. Phys. Rev. Lett. 107, 044502.CrossRefGoogle ScholarPubMed
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95, 024502.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2008 A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20 (7), 075101.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J.Fluid Mech. 638, 383400.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M.K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83, 067303.CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110, 114503.CrossRefGoogle ScholarPubMed
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J.Fluid Mech. 877, R1.CrossRefGoogle Scholar
Chen, X., Wang, D.-P. & Xi, H.-D. 2020 Reduced flow reversals in turbulent convection in the absence of corner vortices. J.Fluid Mech. 891, R5.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.CrossRefGoogle ScholarPubMed
Chong, K.L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3, 013501.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J.Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Emran, M.S. & Shishkina, O. 2020 Natural convection in cylindrical containers with isothermal ring-shaped obstacles. J.Fluid Mech. 882, A3.CrossRefGoogle Scholar
Freund, G., Pesch, W. & Zimmermann, W. 2011 Rayleigh–Bénard convection in the presence of spatial temperature modulations. J.Fluid Mech. 673, 318348.CrossRefGoogle Scholar
Funfshilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J.Fluid Mech. 607, 119139.CrossRefGoogle Scholar
Griffiths, R.W., Hughes, G.O. & Gayen, B. 2013 Horizontal convection dynamics: insights from transient adjustment. J.Fluid Mech. 726, 559595.CrossRefGoogle Scholar
Horstmann, G., Schiepel, D. & Wagner, C. 2018 Experimental study of the global flow-state transformation in a rectangular Rayleigh–Bénard sample. Intl J. Heat Mass Transfer 126, 13331346.CrossRefGoogle Scholar
Huang, S.-D., Wang, F., Xi, H.-D. & Xia, K.-Q. 2015 Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection. Phys. Rev. Lett. 115, 154502.CrossRefGoogle ScholarPubMed
Huang, Y.-X. & Zhou, Q. 2013 Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. J.Fluid Mech. 737, R3.CrossRefGoogle Scholar
Hughes, G.O. & Griffiths, R.W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.CrossRefGoogle Scholar
Jiang, H., Zhu, X., Mathai, V., Verzicco, R., Lohse, D. & Sun, C. 2018 Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces. Phys. Rev. Lett. 120, 044501.CrossRefGoogle ScholarPubMed
Jovanović, M.M., Nikodijević, J.D. & Nikodijević, M.D. 2015 Rayleigh–Bénard convection instability in the presence of spatial temperature modulation on both plates. Intl J. Heat Mass Transfer 73, 6974.Google Scholar
Liu, B. & Zhang, J. 2008 Self-induced cyclic reorganization of free bodies through thermal convection. Phys. Rev. Lett. 100, 244501.CrossRefGoogle ScholarPubMed
Lohse, D. & Xia, K.Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.CrossRefGoogle Scholar
Mau, Y., Hagberg, A. & Meron, E. 2012 Spatial periodic forcing can displace patterns it is intended to control. Phys. Rev. Lett. 109 (3), 034102.CrossRefGoogle ScholarPubMed
Mullarney, J.C., Griffith, R.W. & Hughes, G.O. 2004 Convection driven by differential heating at a horizontal boundary. J.Fluid Mech. 516, 181209.CrossRefGoogle Scholar
Nepomnyashchy, A.A. & Simanovskii, I.B. 2018 The influence of two-dimensional temperature modulation on nonlinear Marangoni waves in two-layer films. J.Fluid Mech. 846, 944965.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J.Fluid Mech. 778, R5.CrossRefGoogle Scholar
Pandey, A., Scheel, J.D. & Schumacher, J. 2018 Turbulent superstructures in Rayleigh–Bénard convection. Nat. Commun. 9, 2118.CrossRefGoogle ScholarPubMed
Petschel, K., Wilczek, M., Breuer, M., Friedrich, R. & Hansen, U. 2011 Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection. Phys. Rev. E 84, 026309.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J.Fluid Mech. 766, 172201.CrossRefGoogle Scholar
Sheard, G.J. & King, M.P. 2011 Horizontal convection: effect of aspect ratio on Rayleigh number scaling and stability. Appl. Math. Model. 35 (4), 16471655.CrossRefGoogle Scholar
Shishkina, O. 2021 Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6, 090502.CrossRefGoogle Scholar
Shishkina, O., Stevens, R.J.A.M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12 (7), 075022.CrossRefGoogle Scholar
Shishkina, O., Wagner, S. & Horn, S. 2014 Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection. Phys. Rev. E 89, 033014.CrossRefGoogle ScholarPubMed
Sreenivasan, K.R., Bershadskii, A. & Niemela, J.J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.CrossRefGoogle ScholarPubMed
Sterl, S., Li, H.-M. & Zhong, J.-Q. 2016 Dynamical and statistical phenomena of circulation and heat transfer in periodically forced rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 084401.CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R.J.A.M., Chan, T.S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.CrossRefGoogle ScholarPubMed
Sun, C., Xi, H.-D. & Xia, K.-Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72, 067302.CrossRefGoogle ScholarPubMed
Sun, C. & Zhou, Q. 2014 Experimental techniques for turbulent Taylor–Couette flow and Rayleigh–Bénard convection. Nonlinearity 27, R89R121.CrossRefGoogle Scholar
Tsai, T., Hussam, W.K., King, M.P. & Sheard, G.J. 2020 Transitions and scaling in horizontal convection driven by different temperature profiles. Intl J. Therm. Sci. 148, 106166.CrossRefGoogle Scholar
Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. 2005 Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94, 034501.CrossRefGoogle ScholarPubMed
Vasiliev, A. & Frick, P. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. JETP Lett. 93 (6), 330334.CrossRefGoogle Scholar
Verma, M.K., Ambhire, S.C. & Pandey, A. 2015 Flow reversals in turbulent convection with free-slip walls. Phys. Fluids 27 (4), 047102.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wan, Z.-H., Wei, P., Verzicco, R., Lohse, D., Ahlers, G. & Stevens, R.J.A.M. 2019 Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection. J.Fluid Mech. 881, 218243.CrossRefGoogle Scholar
Wang, B.F., Zhou, Q. & Sun, C. 2020 Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6, eaaz8239.CrossRefGoogle ScholarPubMed
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018 a Flow reversals in two-dimensional thermal convection in tilted cells. J.Fluid Mech. 849, 355372.CrossRefGoogle Scholar
Wang, Q., Xu, B.-L., Xia, S.-N., Wan, Z.-H. & Sun, D.-J. 2017 Thermal convection in a tilted rectangular cell with aspect ratio 0.5. Chin. Phys. Lett. 34 (10), 104401.CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 b Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), eaat7480.CrossRefGoogle ScholarPubMed
Weiss, S., Seiden, G. & Bodenschatz, E. 2012 Pattern formation in spatially forced thermal convection. New J. Phys. 14 (5), 053010.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307.CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhou, Q. & Xia, K.-Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convection. Phys. Rev. E 73, 056312.CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.CrossRefGoogle ScholarPubMed
Xia, S.-N., Wan, Z.-H., Liu, S., Wang, Q. & Sun, D.-J. 2016 Flow reversals in Rayleigh–Bénard convection with non-Oberbeck–Boussinesq effects. J.Fluid Mech. 798, 628642.CrossRefGoogle Scholar
Xu, A., Chen, X. & Xi, H.-D. 2021 Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells. J.Fluid Mech. 910, A33.CrossRefGoogle Scholar
Yang, J.-L., Zhang, Y.-Z., Jin, T.-C., Dong, Y.-H., Wang, B.-F. & Zhou, Q. 2021a The Pr-dependence of the critical roughness height in two-dimensional turbulent Rayleigh–Bénard convection. J.Fluid Mech. 911, A52.CrossRefGoogle Scholar
Yang, T., Wang, B.-F., Wu, J., Lu, Z. & Zhou, Q. 2021b Horizontal convection in a rectangular enclosure driven by a linear temperature profile. Appl. Math. Mech-Engl. 42 (8), 11831190.CrossRefGoogle Scholar
Zhang, S., Chen, X., Xia, Z., Xi, H., Zhou, Q. & Chen, S. 2021 Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. J.Fluid Mech. 915, A14.CrossRefGoogle Scholar
Zhang, S., Xia, Z., Zhou, Q. & Chen, S. 2020 Controlling flow reversal in two-dimensional Rayleigh–Bénard convection. J.Fluid Mech. 891, R4.CrossRefGoogle Scholar
Zhang, Y., Zhou, Q. & Sun, C. 2017 Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J.Fluid Mech. 814, 165184.CrossRefGoogle Scholar
Zhang, Y.-Z., Sun, C., Bao, Y. & Zhou, Q. 2018 How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J.Fluid Mech. 836, R2.CrossRefGoogle Scholar
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J.Fluid Mech. 630, 367390.CrossRefGoogle Scholar