Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-n7x5d Total loading time: 0.136 Render date: 2021-11-27T04:09:44.057Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation

Published online by Cambridge University Press:  11 October 2004

F. C. G. A. NICOLLEAU
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK
A. ELMAIHY
Affiliation:
Department of Mechanical Engineering, University of Sheffield, Mapping Street, Sheffield S1 3JD, UK

Abstract

We use kinematic simulation (KS) to study the development of a material line immersed in a three-dimensional turbulent flow. We generalize this study to a material surface, cube and sphere. We find that the fractal dimension of the surface can be explained by the same mechanism as that proposed by Villermaux & Gagne (Phys. Rev. Lett. vol. 73, 1994, p. 252) for the line. The fractal dimension of the line or the surface is a linear function of time up to times of the order of the smallest characteristic time of turbulence (or Kolmogorov timescale). For volume objects we describe the respective role of the Reynolds number and of the object's characteristic size. Using the method of characteristics with KS we compute the evolution with time of a concentration field $C({\bm x},t)$ and measure the fractal dimension of the intersection of this scalar field with a given plane. For these objects, we retrieve the result of Villermaux & Innocenti (J. Fluid Mech. vol. 393, 1999, p. 123) that the Reynolds number does not affect the development of the fractal dimension of the iso-scalar surface and extend this result to volume geometries. We also find that for volume objects the characteristic time of development of the fractal dimension is the large scales' characteristic time and not the Kolmogorov timescale.

Type
Papers
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
22
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study of the development of three-dimensional sets of fluid particles and iso-concentration fields using kinematic simulation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *