Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-dkhcg Total loading time: 0.228 Render date: 2021-06-12T15:52:15.889Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures

Published online by Cambridge University Press:  26 July 2019

Bauyrzhan K. Primkulov
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Amir A. Pahlavan
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA
Xiaojing Fu
Affiliation:
Department of Earth and Planetary Science, University of California at Berkeley, Berkeley, CA 94720, USA
Benzhong Zhao
Affiliation:
Department of Civil Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
Christopher W. MacMinn
Affiliation:
Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK
Ruben Juanes
Affiliation:
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Corresponding
E-mail address:

Abstract

We develop a novel ‘moving-capacitor’ dynamic network model to simulate immiscible fluid–fluid displacement in porous media. Traditional network models approximate the pore geometry as a network of fixed resistors, directly analogous to an electrical circuit. Our model additionally captures the motion of individual fluid–fluid interfaces through the pore geometry by completing this analogy, representing interfaces as a set of moving capacitors. By incorporating pore-scale invasion events, the model reproduces, for the first time, both the displacement pattern and the injection-pressure signal under a wide range of capillary numbers and substrate wettabilities. We show that at high capillary numbers the invading patterns advance symmetrically through viscous fingers. In contrast, at low capillary numbers the flow is governed by the wettability-dependent fluid–fluid interactions with the pore structure. The signature of the transition between the two regimes manifests itself in the fluctuations of the injection-pressure signal.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aker, E., Måløy, K. J. & Hansen, A. 1998a Simulating temporal evolution of pressure in two-phase flow in porous media. Phys. Rev. E 58 (2), 22172226.Google Scholar
Aker, E., Måløy, K. J., Hansen, A. & Batrouni, G. G. 1998b A two-dimensional network simulator for two-phase flow in porous media. Trans. Porous Med. 32 (2), 163186.CrossRefGoogle Scholar
Al-Gharbi, M. S. & Blunt, M. J. 2005 Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E 71 (1), 016308.Google ScholarPubMed
Arnéodo, A., Couder, Y., Grasseau, G., Hakim, V. & Rabaud, M. 1989 Uncovering the analytical Saffman–Taylor finger in unstable viscous fingering and diffusion-limited aggregation. Phys. Rev. Lett. 63 (9), 984987.CrossRefGoogle ScholarPubMed
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flows in two dimensions. Rev. Mod. Phys. 58 (4), 977999.CrossRefGoogle Scholar
Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O. et al. 2013 Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl Acad. Sci. USA 110 (10), 37553759.CrossRefGoogle ScholarPubMed
Birovljev, A., Furuberg, L., Feder, J., Jøssang, T., Måløy, K. J. & Aharony, A. 1991 Gravity invasion percolation in two dimensions – experiment and simulation. Phys. Rev. Lett. 67, 584587.CrossRefGoogle ScholarPubMed
Bischofberger, I., Ramachandran, R. & Nagel, S. R. 2015 An island of stability in a sea of fingers: emergent global features of the viscous-flow instability. Soft Matt. 11 (37), 74287432.Google Scholar
Blunt, M. J. 2001 Flow in porous media pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6 (3), 197207.CrossRefGoogle Scholar
Cai, T. T. 2002 On block thresholding in wavelet regression: adaptivity, block size, and threshold level. Statistica Sin. 12, 12411273.Google Scholar
Chandler, R., Koplik, J., Lerman, K. & Willemsen, J. F. 1982 Capillary displacement and percolation in porous media. J. Fluid Mech. 119, 249267.CrossRefGoogle Scholar
Chen, J. D. 1987 Radial viscous fingering patterns in Hele-Shaw cells. Exp. Fluids 5 (6), 363371.CrossRefGoogle Scholar
Chen, J. D. & Wilkinson, D. 1985 Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55 (18), 18921895.CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M. O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.CrossRefGoogle ScholarPubMed
Cieplak, M. & Robbins, M. O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 1150811521.CrossRefGoogle ScholarPubMed
Conti, M. & Marconi, U. M. B. 2010 Diffusion limited propagation of burning fronts. In WIT Transactions on Ecology and the Environment, vol. 137, pp. 3745. WIT Press.Google Scholar
Daccord, G. G., Nittmann, J. & Stanley, H. E. 1986 Radial viscous fingers and diffusion-limited aggregation: fractal dimension and growth sites. Phys. Rev. Lett. 56 (4), 336339.CrossRefGoogle ScholarPubMed
Ferer, M., Ji, C., Bromhal, G. S., Cook, J., Ahmadi, G. & Smith, D. H. 2004 Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70 (1), 016303.Google ScholarPubMed
Fernández, J. F., Albarrán, J. M., Fernandez, J. F. & Albarran, J. M. 1990 Diffusion-limited aggregation with surface tension: scaling of viscous fingering. Phys. Rev. Lett. 64 (18), 21332136.CrossRefGoogle ScholarPubMed
Fernandez, J. F., Rangel, R. & Rivero, J. 1991 Crossover length from invasion percolation to diffusion-limited aggregation in porous media. Phys. Rev. Lett. 67 (21), 29582961.CrossRefGoogle ScholarPubMed
Frette, V., Feder, J., Jøssang, T. & Meakin, P. 1992 Buoyancy-driven fluid migration in porous media. Phys. Rev. Lett. 68, 31643167.CrossRefGoogle ScholarPubMed
Furuberg, L., Måløy, K. J. & Feder, J. 1996 Intermittent behavior in slow drainage. Phys. Rev. E 53 (1), 966977.Google ScholarPubMed
Gjennestad, M. A., Vassvik, M., Kjelstrup, S. & Hansen, A. 2018 Stable and efficient time integration of a dynamic pore network model for two-phase flow in porous media. Frontiers Phys. 6, 56.CrossRefGoogle Scholar
Haines, W. B. 1930 Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agri. Sci. 20 (1), 97116.Google Scholar
Hoffman, R. L. 1975 A study of the advancing interface. I. Interface shape in liquid–gas systems. J. Colloid Interface Sci. 50 (2), 228241.CrossRefGoogle Scholar
Holtzman, R. & Juanes, R. 2010 Crossover from fingering to fracturing in deformable disordered media. Phys. Rev. E 82 (4), 046305.Google ScholarPubMed
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.CrossRefGoogle ScholarPubMed
Holtzman, R., Szulczewski, M. L. & Juanes, R. 2012 Capillary fracturing in granular media. Phys. Rev. Lett. 108 (26), 264504.CrossRefGoogle ScholarPubMed
Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19 (1), 271311.CrossRefGoogle Scholar
Joekar-Niasar, V. & Hassanizadeh, S. M. 2012 Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: a review. Crit. Rev. Environ. Sci. Technol. 42 (18), 18951976.CrossRefGoogle Scholar
Joekar-Niasar, V., Hassanizadeh, S. M. & Dahle, H. K. 2010 Non-equilibrium effects in capillarity and interfacial area in two-phase flow: dynamic pore-network modelling. J. Fluid Mech. 655, 3871.CrossRefGoogle Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.CrossRefGoogle Scholar
Kadanoff, L. P. 1985 Simulating hydrodynamics: a pedestrian model. J. Stat. Phys. 39 (3–4), 267283.CrossRefGoogle Scholar
Knudsen, H. A. & Hansen, A. 2002 Relation between pressure and fractional flow in two-phase flow in porous media. Phys. Rev. E 65 (5), 056310.Google ScholarPubMed
Lee, H., Gupta, A., Hatton, T. A. & Doyle, P. S. 2017 Creating isolated liquid compartments using photopatterned obstacles in microfluidics. Phys. Rev. A 7 (4), 044013.Google Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.CrossRefGoogle Scholar
Lenormand, R. & Zarcone, C. 1985 Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54 (20), 22262229.CrossRefGoogle Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.CrossRefGoogle Scholar
Li, S., Lowengrub, J. S., Fontana, J. & Palffy-Muhoray, P. 2009 Control of viscous fingering patterns in a radial Hele-Shaw cell. Phys. Rev. Lett. 102 (17), 174501.CrossRefGoogle Scholar
Måløy, K. J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55 (24), 26882691.CrossRefGoogle Scholar
Måløy, K. J., Furuberg, L., Feder, J. & Jossang, T. 1992 Dynamics of slow drainage in porous media. Phys. Rev. Lett. 68 (14), 21612164.CrossRefGoogle Scholar
Meakin, P., Feder, J., Frette, V. & Jøssang, T. 1992 Invasion percolation in a destabilizing gradient. Phys. Rev. A 46 (6), 33573368.CrossRefGoogle Scholar
Meakin, P. & Tartakovsky, A. M. 2009 Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47 (3), RG3002.Google Scholar
Meakin, P., Tolman, S. & Blumen, A. 1989 Diffusion-limited aggregation. Proc. R. Soc. Lond. A 423 (1864), 133148.Google Scholar
Moebius, F. & Or, D. 2012 Interfacial jumps and pressure bursts during fluid displacement in interacting irregular capillaries. J. Colloid Interface Sci. 377 (1), 406415.CrossRefGoogle ScholarPubMed
Niemeyer, L., Pietronero, L. & Wiesmann, H. J. 1984 Fractal dimension of dielectric breakdown. Phys. Rev. Lett. 52 (12), 10331036.CrossRefGoogle Scholar
Nittmann, J., Daccord, G. & Stanley, H. E. 1985 Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314 (6007), 141144.CrossRefGoogle Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.CrossRefGoogle ScholarPubMed
Paterson, L. 1981 Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113, 513529.CrossRefGoogle Scholar
Primkulov, B. K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., MacMinn, C. W. & Juanes, R. 2018 Quasistatic fluid–fluid displacement in porous media: invasion–percolation through a wetting transition. Phys. Rev. Fluids 3, 104001.CrossRefGoogle Scholar
Rabbani, H. S., Zhao, B., Juanes, R. & Shokri, N. 2018 Pore geometry control of apparent wetting in porous media. Sci. Rep. 8 (1), 15729.Google ScholarPubMed
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M. & Lindsay, H. M. 1986 Interfacial stability of immiscible displacement in a porous medium. Phys. Rev. Lett. 57 (14), 17181721.CrossRefGoogle Scholar
Strang, G. 2007 Computational Science and Engineering. Wellesley–Cambridge Press.Google Scholar
Sygouni, V., Tsakiroglou, C. D. & Payatakes, A. C. 2006 Capillary pressure spectrometry: toward a new method for the measurement of the fractional wettability of porous media. Phys. Fluids 18 (5), 053302.CrossRefGoogle Scholar
Sygouni, V., Tsakiroglou, C. D. & Payatakes, A. C. 2007 Using wavelets to characterize the wettability of porous materials. Phys. Rev. E 76 (5), 056304.Google ScholarPubMed
Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K. J. & Schmittbuhl, J. 2005 Influence of pore-scale disorder on viscous fingering during drainage. Europhys. Lett. 71 (4), 583589.CrossRefGoogle Scholar
Trojer, M., Szulczewski, M. L. & Juanes, R. 2015 Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.CrossRefGoogle Scholar
Tryggvason, G. & Aref, H. 1983 Numerical experiments on Hele Shaw flow with a sharp interface. J. Fluid Mech. 136, 130.CrossRefGoogle Scholar
Wilkinson, D. 1984 Percolation model of immiscible displacement in the presence of buoyancy forces. Phys. Rev. A 30 (1), 520531.CrossRefGoogle Scholar
Wilkinson, D. & Willemsen, J. F. 1983 Invasion percolation: a new form of percolation theory. J. Phys. A 16 (14), 33653376.CrossRefGoogle Scholar
Witten, T. A., Sander, L. M. & Sander, I. M. 1981 Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (19), 14001403.CrossRefGoogle Scholar
Yortsos, Y. C., Xu, B. & Salin, D. 1997 Phase diagram of fully-developed drainage in porous media. Phys. Rev. Lett. 79 (23), 45814584.CrossRefGoogle Scholar
Zhao, B., MacMinn, C. W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.CrossRefGoogle ScholarPubMed

Primkulov Supplementary Movie 1

Video shows the fluid-fluid displacement at Ca=1e-6 and contact angle of 90 deg. The pore-space is colored based on the local pressure, where tones of black, yellow, and white stand for high, intermediate, and low pressures, respectively. The rapid advance of the local interface after the pore-invasion event pressurizes the defending fluid ahead. This overpressure then dissipates. The size of the colored circles at the fluid-fluid front stands for the status of filling: increasing/decreasing size of the colored circle indicates filling/emptying of the pore throat. When the size of the colored circle matches the size of the post, the throat is full. The red, blue, and green colors stand for ``burst'', ``touch'', and ``overlap'' events. The mean radius of the pillars is 1055 microns; the mean hydraulic radius of the throats is 169 microns; the mean distance between the pore centers is 1577 microns.

Download Primkulov Supplementary Movie 1(Video)
Video 28 MB

Primkulov Supplementary Movie 2

Video shows the fluid-fluid displacement at Ca=1e-3 and contact angle of 46 deg. The network of throats is colored based on the local flow rates, where the color changes from red to yellow as flowrate changes from high to low. The dominant flow channels are the chains with the darkest colors. In the limit of high capillary numbers, the locations of the dominant flow channels change as the viscous fingers grow. This is best seen by observing the change in colors at a fixed spot ahead of the invading front. The size of the colored circles at the fluid-fluid front stands for the status of filling: increasing/decreasing size of the colored circle indicates filling/emptying of the pore throat. When the size of the colored circle matches the size of the post, the throat is full. The red, blue, and green colors stand for ``burst'', ``touch'', and ``overlap'' events. The mean radius of the pillars is 1055 microns; the mean hydraulic radius of the throats is 169 microns; the mean distance between the pore centers is 1577 microns.

Download Primkulov Supplementary Movie 2(Video)
Video 8 MB
12
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Signatures of fluid–fluid displacement in porous media: wettability, patterns and pressures
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *