Skip to main content Accessibility help
×
Home
Hostname: page-component-55b6f6c457-xdj6x Total loading time: 0.228 Render date: 2021-09-28T13:43:05.209Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer

Published online by Cambridge University Press:  01 December 2000

JUSTIN MOSTON
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
PHILIP A. STEWART
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
STEPHEN J. COWLEY
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Abstract

This paper studies the nonlinear development of two-dimensional Tollmien–Schlichting waves in an incompressible flat-plate boundary layer at asymptotically large values of the Reynolds number. Attention is restricted to the ‘far-downstream lower-branch’ régime where a multiple-scales analysis is possible. It is supposed that to leading-order the waves are inviscid and neutral, and governed by the [Davis–Acrivos–]Benjamin–Ono equation. This has a three-parameter family of periodic solutions, the large-amplitude (soliton) limit of which bears a qualitative resemblance to the ‘spikes’ observed in certain ‘K-type’ transition experiments. The variation of the parameters over slow length- and timescales is controlled by a viscous sublayer. For the case of a purely temporal evolution, it is shown that a solution for this sublayer ceases to exist when the amplitude reaches a certain finite value. For a purely spatial evolution, it appears that an initially linear disturbance does not evolve to a fully nonlinear stage of the envisaged form. The implications of these results for the ‘soliton’ theory of spike formation are discussed.

Type
Research Article
Copyright
© 2000 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *