Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-pp5r9 Total loading time: 0.319 Render date: 2021-06-21T11:38:58.667Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

On the late-time behaviour of a bounded, inviscid two-dimensional flow

Published online by Cambridge University Press:  13 October 2015

David G. Dritschel
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
Wanming Qi
Affiliation:
School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA Department of Physics, Brown University, Providence, RI 02912-1843, USA
J. B. Marston
Affiliation:
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA Department of Physics, Brown University, Providence, RI 02912-1843, USA
Corresponding

Abstract

Using complementary numerical approaches at high resolution, we study the late-time behaviour of an inviscid incompressible two-dimensional flow on the surface of a sphere. Starting from a random initial vorticity field comprised of a small set of intermediate-wavenumber spherical harmonics, we find that, contrary to the predictions of equilibrium statistical mechanics, the flow does not evolve into a large-scale steady state. Instead, significant unsteadiness persists, characterised by a population of persistent small-scale vortices interacting with a large-scale oscillating quadrupolar vorticity field. Moreover, the vorticity develops a stepped, staircase distribution, consisting of nearly homogeneous regions separated by sharp gradients. The persistence of unsteadiness is explained by a simple point-vortex model characterising the interactions between the four main vortices which emerge.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Abramov, R. V. & Majda, A. J. 2003 Statistically relevant conserved quantities for truncated quasigeostrophic flow. Proc. Natl Acad. Sci. USA 100, 38413846.CrossRefGoogle ScholarPubMed
Bouchet, F. & Corvellec, M. 2010 Invariant measures of the 2D Euler and Vlasov equations. J. Stat. Phys. 2010, P08021.Google Scholar
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227295.Google Scholar
Brands, H., Stulemeyer, J., Pasmanter, R. A. & Schep, T. J. 1997 A mean field prediction of the asymptotic state of decaying 2D turbulence. Phys. Fluids 9, 28152817.CrossRefGoogle Scholar
Bricmont, J., Kupiainen, A. & Lefevere, R. 2001 Ergodicity of the 2D Navier–Stokes equations with random forcing. Commun. Math. Phys. 224, 6581.Google Scholar
Charney, J. 1949 On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Meteorol. 6, 371385.2.0.CO;2>CrossRefGoogle Scholar
Chavanis, P. H. 2002 Dynamics and Thermodynamics of Systems with Long-Range Interactions, Lecture Notes in Physics, vol. 602, pp. 208289. Springer.CrossRefGoogle Scholar
Chavanis, P. H. 2009 Dynamical and thermodynamical stability of two-dimensional flows: variational principles and relaxation equations. Eur. Phys. J. B 70, 73105.Google Scholar
Dritschel, D. G. 1988 Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J. Comput. Phys. 77, 240266.CrossRefGoogle Scholar
Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223261.CrossRefGoogle Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1997 A contour-advective semi-lagrangian algorithm for the simulation of fine-scale conservative fields. Q. J. R. Meteorol. Soc. 123, 10971130.CrossRefGoogle Scholar
Dritschel, D. G. & Fontane, J. 2010 The combined Lagrangian advection method. J. Comput. Phys. 229, 54085417.CrossRefGoogle Scholar
Dritschel, D. G., Haynes, P. H., Juckes, M. N. & Shepherd, T. G. 1991 The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech. 230, 647665.CrossRefGoogle Scholar
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci 65, 855874.CrossRefGoogle Scholar
Dritschel, D. G. & Scott, R. K. 2009 On the simulation of nearly inviscid two-dimensional turbulence. J. Comput. Phys. 228, 27072711.CrossRefGoogle Scholar
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2009 Late time evolution of unforced inviscid two-dimensional turbulence. J. Fluid Mech. 640, 215233.CrossRefGoogle Scholar
Dritschel, D. G. & Tobias, S. M. 2012 Two-dimensional magnetohydrodynamic turbulence in the small Prandtl number limit. J. Fluid Mech. 703, 8598.CrossRefGoogle Scholar
Dritschel, D. G., de la Torre Juárez, M. & Ambaum, M. H. P. 1999 On the three-dimensional vortical nature of atmospheric and oceanic flows. Phys. Fluids 11, 15121520.CrossRefGoogle Scholar
Dritschel, D. G., Tran, C. V. & Scott, R. K. 2007 Revisiting Batchelor’s theory of two-dimensional turbulence. J. Fluid Mech. 591, 379391.CrossRefGoogle Scholar
Dubinkina, S. & Frank, J. 2010 Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method. J. Comput. Phys. 229, 26342648.CrossRefGoogle Scholar
Eyink, G. L. & Sreenivasan, K. R. 2006 Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87135.Google Scholar
Fjørtoft, R. 1953 On the changes in the spectral distribution of kinetic energy for two dimensional, nondivergent flow. Tellus 5, 225230.CrossRefGoogle Scholar
Fontane, J. & Dritschel, D. G. 2009 The HyperCASL Algorithm: a new approach to the numerical simulation of geophysical flows. J. Comput. Phys. 228, 64116425.CrossRefGoogle Scholar
Heikes, R. & Randall, D. A. 1995a Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I. Basic design and results of tests. Mon. Weath. Rev. 123, 18621880.2.0.CO;2>CrossRefGoogle Scholar
Heikes, R. & Randall, D. A. 1995b Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II. A detailed description of the grid and an analysis of numerical accuracy. Mon. Weath. Rev. 123, 18811887.2.0.CO;2>CrossRefGoogle Scholar
Herbert, C. 2013 Additional invariants and statistical equilibria for the 2D Euler equations on a spherical domain. J. Stat. Phys. 152, 10841114.CrossRefGoogle Scholar
Jiménez, J. 1994 Hyperviscous vortices. J. Fluid Mech. 279, 169176.CrossRefGoogle Scholar
Majda, A. J. & Wang, X. 2006 Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press.CrossRefGoogle Scholar
Marcus, P. S. 1993 Jupiter’s great red spot and other vortices. Annu. Rev. Astron. Astrophys. 31, 523573.CrossRefGoogle Scholar
Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. J. Fluid Mech. 6, 39543962.CrossRefGoogle Scholar
Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991a Decaying, two-dimensional, Navier–Stokes turbulence at very long times. Physica D 51, 531538.CrossRefGoogle Scholar
Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991b Selective decay and coherent vortices in two-dimensional incompressible turbulence. Phys. Rev. Lett. 66, 27312734.CrossRefGoogle ScholarPubMed
Miller, J. 1990 Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 21372140.CrossRefGoogle ScholarPubMed
Miller, J., Weichman, P. B. & Cross, M. C. 1992 Statistical mechanics, Euler’s equation, and Jupiter’s Red Spot. Phys. Rev. A 45, 23282359.CrossRefGoogle ScholarPubMed
Mohebalhojeh, A. R. & Dritschel, D. G. 2007 Assessing the numerical accuracy of complex spherical shallow water flows. Mon. Weath. Rev. 135, 38763894.CrossRefGoogle Scholar
Montgomery, D., Matthaeus, W. H., Stribling, W. T., Martinez, D. & Oughton, S. 1992 Relaxation in two dimensions and the ‘Sinh–Poisson’ equation. Phys. Fluids A 4, 36.CrossRefGoogle Scholar
Montgomery, D., Shan, X. & Matthaeus, W. H. 1993 Navier–Stokes relaxation to Sinh–Poisson states at finite Reynolds numbers. Phys. Fluids A 5, 22072216.CrossRefGoogle Scholar
Morita, H.2011 Collective oscillation in two-dimensional fluid, preprint, arXiv:1103.1140.Google Scholar
Newton, P. K. 2001 The $N$ -vortex problem. In Analytical Techniques, Applied Mathematical Sciences, vol. 145, p. 415. Springer.Google Scholar
Polvani, L. M. & Dritschel, D. G. 1993 Wave and vortex dynamics on the surface of the sphere: equilibria and their stability. J. Fluid Mech. 255, 3564.CrossRefGoogle Scholar
Qi, W. & Marston, J. B. 2014 Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere. J. Stat. Mech. 2014 (7), P07020.Google Scholar
Robert, R. 1991 A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65, 531553.CrossRefGoogle Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.CrossRefGoogle Scholar
Scott, R. K. & Dritschel, D. G. 2012 The structure of zonal jets in geostrophic turbulence. J. Fluid Mech. 711, 576598.CrossRefGoogle Scholar
Segre, E. & Kida, S. 1998 Late states of incompressible 2d decaying vorticity fields. Fluid Dyn. Res. 23, 89112.CrossRefGoogle Scholar
Whitaker, N. & Turkington, B. 1994 Maximum entropy states for rotating vortex patches. Phys. Fluids 6 (12), 3963.CrossRefGoogle Scholar
Williams, P. D. 2009 A proposed modification to the Robert–Asselin time filter. Mon. Weath. Rev. 137, 25382546.CrossRefGoogle Scholar
Yao, H. B., Dritschel, D. G. & Zabusky, N. J. 1995 High-gradient phenomena in two-dimensional vortex interactions. Phys. Fluids 7, 539548.CrossRefGoogle Scholar
Yin, Z., Montgomery, D. C. & Clercx, H. J. H. 2003 Alternative statistical-mechanical descriptions of decaying two-dimensional turbulence in terms of ‘patches’ and ‘points’. Phys. Fluids 15, 19371953.CrossRefGoogle Scholar
Zermelo, E. 1902 Hydrodynamische Untersuchungen über die Wirbelbewegungen in einer Kugelfläche. Z. Math. Phys. 47, 201237.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the late-time behaviour of a bounded, inviscid two-dimensional flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the late-time behaviour of a bounded, inviscid two-dimensional flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the late-time behaviour of a bounded, inviscid two-dimensional flow
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *