Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-16T06:20:23.922Z Has data issue: false hasContentIssue false

Numerical study of extreme mechanical force exerted by a turbulent flow on a bluff body by direct and rare-event sampling techniques

Published online by Cambridge University Press:  18 May 2020

Thibault Lestang*
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard de Lyon, CNRS, Laboratoire de Physique, F-69342Lyon, France Univ Lyon, Ecole Centrale de Lyon, Univ Claude Bernard de Lyon, INSA de Lyon, CNRS, Laboratoire de Mécanique des Fluides et d’Acoustique, F-69134Ecully CEDEX, France
Freddy Bouchet
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard de Lyon, CNRS, Laboratoire de Physique, F-69342Lyon, France
Emmanuel Lévêque
Affiliation:
Univ Lyon, Ecole Centrale de Lyon, Univ Claude Bernard de Lyon, INSA de Lyon, CNRS, Laboratoire de Mécanique des Fluides et d’Acoustique, F-69134Ecully CEDEX, France
*
Email address for correspondence: thibault.lestang@cs.ox.ac.uk

Abstract

This study investigates, by means of numerical simulations, extreme mechanical force exerted by a turbulent flow impinging on a bluff body, and examines the relevance of two distinct rare-event algorithms to efficiently sample these events. The drag experienced by a square obstacle placed in a turbulent channel flow (in two dimensions) is taken as a representative case study. Direct sampling shows that extreme fluctuations are closely related to the presence of a strong vortex blocked in the near wake of the obstacle. This vortex is responsible for a significant pressure drop between the forebody and the base of the obstacle, thus yielding a very high value of the drag. Two algorithms are then considered to speed up the sampling of such flow scenarios, namely the adaptive multilevel splitting (AMS) and the Giardina–Kurchan–Tailleur–Lecomte (GKTL) algorithms. The general idea behind these algorithms is to replace a long simulation by a set of much shorter ones, running in parallel, with dynamics that is replicated or pruned, according to some specific rules designed to sample large-amplitude events more frequently. These algorithms have been shown to be relevant for a wide range of problems in statistical physics, computer science, biochemistry. The present study is the first application to a fluid–structure interaction problem. Practical evidence is given that the fast sweeping time of turbulent fluid structures past the obstacle has a strong influence on the efficiency of the rare-event algorithm. While the AMS algorithm does not yield significant run-time savings as compared to direct sampling, the GKTL algorithm appears to be effective in sampling very efficiently extreme fluctuations of the time-averaged drag and estimating related statistics such as return times. Software used for simulations and data processing is available at https://github.com/tlestang/paper_extreme_drag_fluctuations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldous, D. & Vazirani, U. 1994 ‘Go with the winners’ algorithms. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 492501. IEEE.CrossRefGoogle Scholar
Aristoff, D., Lelièvre, T., Mayne, C. G. & Teo, I. 2015 Adaptive multilevel splitting in molecular dynamics simulations. ESAIM: Proceedings and Surveys 48, 215225.CrossRefGoogle ScholarPubMed
Bec, J. & Khanin, K. 2007 Burgers turbulence. Phys. Rep. 447 (1–2), 166.Google Scholar
Belenky, V., Weems, K. & Lin, W.-M. 2016 Split-time method for estimation of probability of capsizing caused by pure loss of stability. Ocean Engng 122, 333343.CrossRefGoogle Scholar
Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. E 94 (3), 511525.CrossRefGoogle Scholar
Blonigan, P. J., Farazmand, M. & Sapsis, T. P. 2019 Are extreme dissipation events predictable in turbulent fluid flows? Phys. Rev. Fluids 4, 044606.CrossRefGoogle Scholar
Bolhuis, P. G. 2005 Kinetic pathways of 𝛽-hairpin (un)folding in explicit solvent. Biophys. J. 88 (1), 5061.CrossRefGoogle ScholarPubMed
Bouchet, F., Laurie, J. & Zaboronski, O. 2014 Langevin dynamics, large deviations and instantons for the quasi-geostrophic model and two-dimensional Euler equations. J. Stat. Phys. 156 (6), 10661092.CrossRefGoogle Scholar
Bouchet, F., Rolland, J. & Simonnet, E. 2019 Rare event algorithm links transitions in turbulent flows with activated nucleations. Phys. Rev. Lett. 122 (7), 074502.CrossRefGoogle ScholarPubMed
Brewer, T., Clark, S. R., Bradford, R. & Jack, R. L. 2018 Efficient characterisation of large deviations using population dynamics. J. Stat. Mech. 2018 (5), 053204.CrossRefGoogle Scholar
Cérou, F. & Guyader, A. 2007 Adaptive multilevel splitting for rare event analysis. Stochastic Anal. Appl. 25 (2), 417443.CrossRefGoogle Scholar
Cérou, F., Guyader, A. & Rousset, M. 2019 Adaptive multilevel splitting: historical perspective and recent results. Chaos 29 (4), 043108.CrossRefGoogle ScholarPubMed
Chernykh, A. I. & Stepanov, M. G. 2001 Large negative velocity gradients in Burgers turbulence. Phys. Rev. E 64 (2), 026306.Google ScholarPubMed
Del Moral, P. 2004 Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer.CrossRefGoogle Scholar
Del Moral, P. 2013 Mean Field Simulation for Monte Carlo Integration, Monographs on Statistics and Applied Probability, vol. 126. CRC.CrossRefGoogle Scholar
Dematteis, G., Grafke, T., Onorato, M. & Vanden-Eijnden, E.2019 Experimental evidence of hydrodynamic instantons: the universal route to rogue waves. arXiv:1907.01320.CrossRefGoogle Scholar
Dematteis, G., Grafke, T. & Vanden-Eijnden, E. 2018 Rogue waves and large deviations in deep sea. Proc. Natl Acad. Sci. USA 115 (5), 855860.CrossRefGoogle ScholarPubMed
Donzis, D. A. & Sreenivasan, K. R. 2010 Short-term forecasts and scaling of intense events in turbulence. J. Fluid Mech. 647, 1326.CrossRefGoogle Scholar
Düben, P., Homeier, D., Jansen, K., Mesterhazy, D., Münster, G. & Urbach, C. 2008 Monte Carlo simulations of the randomly forced Burgers equation. Europhys. Lett. 84 (4), 40002.CrossRefGoogle Scholar
van Erp, T. S. & Bolhuis, P. G. 2005 Elaborating transition interface sampling methods. J. Comput. Phys. 205 (1), 157181.CrossRefGoogle Scholar
Escobedo, F. A., Borrero, E. E. & Araque, J. C. 2009 Transition path sampling and forward flux sampling. Applications to biological systems. J. Phys.: Condens. Matter 21 (33), 333101.Google ScholarPubMed
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K. & van Wijland, F. 2007 Dynamical first-order phase transition in kinetically constrained models of glasses. Phys. Rev. Lett. 98 (19), 195702.CrossRefGoogle ScholarPubMed
Giardinà, C., Kurchan, J., Lecomte, V. & Tailleur, J. 2011 Simulating rare events in dynamical processes. J. Stat. Phys. 145 (4), 787811.CrossRefGoogle Scholar
Giardinà, C., Kurchan, J. & Peliti, L. 2006 Direct evaluation of large-deviation functions. Phys. Rev. Lett. 96 (12), 120603.Google ScholarPubMed
Glasserman, P., Heidelberger, P., Shahabuddin, P. & Zajic, T. 1999 Multilevel splitting for estimating rare event probabilities. Oper. Res. 47 (4), 585600.CrossRefGoogle Scholar
Grafke, T., Grauer, R. & Schäfer, T. 2013 Instanton filtering for the stochastic Burgers equation. J. Phys. A 46 (6), 062002.Google Scholar
Grafke, T., Grauer, R. & Schäfer, T. 2015 The instanton method and its numerical implementation in fluid mechanics. J. Phys. A 48 (33), 333001.Google Scholar
Grassberger, P. 2002 Go with the winners: a general Monte Carlo strategy. Comput. Phys. Commun. 147 (1–2), 6470.CrossRefGoogle Scholar
Grigorio, L. S., Bouchet, F., Pereira, R. M. & Chevillard, L. 2017 Instantons in a Lagrangian model of turbulence. J. Phys. A 50 (5), 055501.Google Scholar
Gurarie, V. & Migdal, A. 1996 Instantons in the Burgers equation. Phys. Rev. E 54 (5), 49084914.Google ScholarPubMed
Hsu, H. & Grassberger, P. 2011 A review of Monte Carlo simulations of polymers with PERM. J. Stat. Phys. 144, 597.CrossRefGoogle Scholar
Huber, G. A. & Kim, S. 1996 Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J. 70 (1), 97110.CrossRefGoogle ScholarPubMed
Kahn, H. & Harris, T. E. 1951 Estimation of Particle Transmission by Random Sampling, vol. 12, pp. 2730. National Bureau of Standards.Google Scholar
Kanev, S. & van Engelen, T. 2010 Wind turbine extreme gust control. Wind Energy 13 (1), 1835.CrossRefGoogle Scholar
Kosztin, I., Faber, B. & Schulten, K. 1996 Introduction to the diffusion Monte Carlo method. Am. J. Phys. 64 (5), 633644.CrossRefGoogle Scholar
Kraichnan, R. H. & Chen, S. 1989 Is there a statistical mechanics of turbulence? Physica D 37 (1), 160172.Google Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E. M. 2017 The Lattice Boltzmann Method: Principles and Practice. Graduate Texts in Physics. Springer.CrossRefGoogle Scholar
Laffargue, T., Lam, K.-D. N. T., Kurchan, J. & Tailleur, J. 2013 Large deviations of lyapunov exponents. J. Phys. A 46 (25), 254002.Google Scholar
Latt, J., Chopard, B., Malaspinas, O., Deville, M. & Michler, A. 2008 Straight velocity boundaries in the lattice Boltzmann method. Phys. Rev. E 77, 056703.Google ScholarPubMed
Laurie, J. & Bouchet, F. 2015 Computation of rare transitions in the barotropic quasi-geostrophic equations. New J. Phys. 17 (1), 015009.Google Scholar
Lecomte, V. & Tailleur, J. 2007 A numerical approach to large deviations in continuous time. J. Stat. Mech. 2007 (3), P03004.Google Scholar
Lesieur, M. 2011 Turbulence in Fluids: Stochastic and Numerical Modelling. Springer.Google Scholar
Lestang, T.2018 Numerical simulation and rare events algorithms for the study of extreme fluctuations of the drag force acting on an obstacle immersed in a turbulent flow. Theses, Université de Lyon.Google Scholar
Lestang, T., Ragone, F., Bréhier, C.-E., Herbert, C. & Bouchet, F. 2018 Computing return times or return periods with rare event algorithms. J. Stat. Mech. 2018 (4), 043213.CrossRefGoogle Scholar
Louvin, H., Dumonteil, E. & Lelièvre, T. 2017 Three-dimensional neutron streaming calculations using adaptive multilevel splitting. In M&C 2017 – International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering.Google Scholar
Mesterházy, D., Biferale, L., Jansen, K. & Tripiccione, R.2013 Lattice Monte Carlo methods for systems far from equilibrium. arXiv:1311.4386.Google Scholar
Mesterházy, D. & Jansen, K. 2011 Anomalous scaling in the random-force-driven Burgers’ equation: a Monte Carlo study. New J. Phys. 13 (10), 103028.Google Scholar
Mohamad, M. A. & Sapsis, T. P. 2018 Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 115 (44), 1113811143.CrossRefGoogle ScholarPubMed
Nemoto, T., Jack, R. L. & Lecomte, V. 2017 Finite-size scaling of a first-order dynamical phase transition: adaptive population dynamics and an effective model. Phys. Rev. Lett. 118, 115702.CrossRefGoogle Scholar
Ragone, F., Wouters, J. & Bouchet, F. 2018 Computation of extreme heat waves in climate models using a large deviation algorithm. Proc. Natl Acad. Sci. USA 115 (1), 2429.CrossRefGoogle ScholarPubMed
Rodi, W. 1998 Large-eddy simulations of the flow past bluff bodies: state-of-the art. JSME 41, 361.Google Scholar
Rolland, J. 2018 Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows. Phys. Rev. E 97 (2), 023109.Google ScholarPubMed
Rolland, J., Bouchet, F. & Simonnet, E. 2016 Computing transition rates for the 1-D stochastic Ginzburg–Landau–Allen–Cahn equation for finite-amplitude noise with a rare event algorithm. J. Stat. Phys. 162 (2), 277311.CrossRefGoogle Scholar
Rolland, J. & Simonnet, E. 2015 Statistical behavior of adaptive multilevel splitting algorithms in simple models. J. Comput. Phys. 283, 541558.CrossRefGoogle Scholar
Rosis, A. D. 2016 Non-orthogonal central moments relaxing to a discrete equilibrium: a D2Q9 lattice Boltzmann model. Europhys. Lett. 116 (4), 44003.CrossRefGoogle Scholar
Succi, S. 2018 The Lattice Boltzmann Equation: For Complex States of Flowing Matter. Oxford University Press.CrossRefGoogle Scholar
Sukop, M. C. & Thorne, D. T. Jr 2006 Lattice Boltzmann Modeling: An Introduction for Geoscientists And Engineers. Springer.CrossRefGoogle Scholar
Tailleur, J. & Kurchan, J. 2007 Probing rare physical trajectories with Lyapunov weighted dynamics. Nat. Phys. 3 (3), 203207.CrossRefGoogle Scholar
Teo, I., Mayne, C. G., Schulten, K. & Lelièvre, T. 2016 Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time. J. Chem. Theory Comput. 12 (6), 29832989.CrossRefGoogle ScholarPubMed
Touchette, H. 2009 The large deviation approach to statistical mechanics. Phys. Rep. 478 (1–3), 169.Google Scholar
Villen-Altamirano, M. & Villen-Altamirano, J. 1994 RESTART: a straightforward method for fast simulation of rare events. In Proceedings of Winter Simulation Conference, pp. 282289.CrossRefGoogle Scholar
Wouters, J. & Bouchet, F. 2016 Rare event computation in deterministic chaotic systems using genealogical particle analysis. J. Phys. A 49 (37), 374002.Google Scholar
Yeung, P. K., Zhai, X. M. & Sreenivasan, K. R. 2015 Extreme events in computational turbulence. Proc. Natl Acad. Sci. USA 112 (41), 1263312638.CrossRefGoogle ScholarPubMed
Zuckerman, D. M. & Chong, L. T. 2017 Weighted ensemble simulation: review of methodology, applications, and software. Annu. Rev. Biophys. 46, 4357.CrossRefGoogle Scholar