Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T13:35:05.136Z Has data issue: false hasContentIssue false

A nonlinear model for indirect combustion noise through a compact nozzle

Published online by Cambridge University Press:  23 September 2013

Maxime Huet*
ONERA – The French Aerospace Lab, F-92322 Châtillon, France
Alexis Giauque
ONERA – The French Aerospace Lab, F-92322 Châtillon, France
Email address for correspondence:


The present paper deals with the generation of sound by the passage of acoustic or entropy perturbations through a nozzle in the nonlinear regime and in the low-frequency limit. The analytical model of Marble and Candel for compact nozzles (J. Sound Vib., vol. 55, 1977, pp. 225–243), initially developed for excitations in the linear regime, is rederived and extended to the nonlinear domain. Full nonlinear and second-order models are written for both subcritical and supercritical nozzles in the absence of shock and a detailed methodology is provided for the resolution of the second-order system. The accuracy of the second-order model is assessed for entropy forcings. It is shown to be accurate for all waves, with the exception of the upstream generated wave for subcritical diverging geometries where higher-order nonlinear contributions cannot be neglected. In the context of indirect combustion noise, the phenomenon of regime change of the nozzle due to an incoming entropy fluctuation is also addressed. Regime change is related to a Mach number modification induced by temperature and velocity fluctuations. In the present study, it translates into a limitation of the maximum amplitude of the incoming entropy forcing. Such limitations are to be considered for subcritical nozzles with significant inlet or outlet Mach numbers, where the flow transition is observed even for very low-amplitude entropy excitations. With the constraint of those limitations, the analytical extended nozzle describing functions representing the full nonlinear response for indirect combustion noise are validated through detailed comparisons with numerical simulations.

©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


ACARE 2010 Aeronautics and air transport: beyond vision 2020 (towards 2050). European Union.Google Scholar
Atassi, O. V. & Gilson, J. J. 2010 Acoustic mode scattering from a heat source. J. Fluid Mech. 651, 126.CrossRefGoogle Scholar
Bake, F., Kings, N., Fischer, A. & Röhle, I. 2009 Experimental investigation of the entropy noise mechanism in aero-engines. Intl J. Aeroacoust. 8, 125142.CrossRefGoogle Scholar
Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007 High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224, 637662.CrossRefGoogle Scholar
Beyer, R. T. 1997 Nonlinear Acoustics. Acoustical Society of America.Google Scholar
Bloy, A. W. 1979 The pressure waves produced by the convection of temperature disturbances in high subsonic nozzle flows. J. Fluid Mech. 93, 465475.CrossRefGoogle Scholar
Bogey, C. & Bailly, C. 2004 A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194214.CrossRefGoogle Scholar
Bohn, M. S. 1977 Response of a subsonic nozzle to acoustic and entropy disturbances. J. Sound Vib. 52, 283297.CrossRefGoogle Scholar
Boudier, G., Lamarque, N., Staffelbach, G., Gicquel, L. Y. M. & Poinsot, T. 2009 Thermo-acoustic stability of a helicopter gas turbine combustor using large-eddy simulations. Intl J. Aeroacoust. 8, 6994.CrossRefGoogle Scholar
Brear, M. J., Nicoud, F., Talei, M., Giauque, A. & Hawkes, E. R. 2012 Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 5373.CrossRefGoogle Scholar
de Cacqueray, N. 2010 Méthodes numériques pour les écoulements supersoniques avec application au calcul du bruit rayonné par un jet sur-détendu. PhD thesis, École Centrale de Lyon, Lyon, France.Google Scholar
Candel, S. M. 1972 Analytical studies of some acoustic problems of jet engines. PhD thesis, California Institute of Technology, Pasadena.Google Scholar
Candel, S. M., Defillipi, F. & Launay, A. 1980 Determination of the inhomogeneous structure of a medium from its plane wave reflection response. Part 1. A numerical analysis of the direct problem. J. Sound Vib. 68, 571582.CrossRefGoogle Scholar
Candel, S. M., Durox, D., Schuller, T., Palies, P., Bourgouin, J.-F. & Moeck, J. P. 2012 Progress and challenges in swirling flame dynamics. Comptes Rendus Mécanique 340, 758768.CrossRefGoogle Scholar
Cumpsty, N. A. & Marble, F. E. 1977 The interaction of entropy fluctuations with turbine blade rows: a mechanism of turbojet engine noise. Proc. R. Soc. Lond. A 357, 323344.Google Scholar
Durán, I., Leyko, M., Moreau, S., Nicoud, F. & Poinsot, T. 2013a Computing combustion noise by combining large eddy simulations with analytical models for the propagation of waves through turbine blades. Comptes Rendus Mécanique 341, 131140.CrossRefGoogle Scholar
Durán, I. & Moreau, S. 2013 Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190231.CrossRefGoogle Scholar
Durán, I., Moreau, S. & Poinsot, T. 2013b Analytical and numerical study of combustion noise through a subsonic nozzle. AIAA J. 51, 4252.CrossRefGoogle Scholar
Giauque, A. 2007 Fonctions de transfert de flamme et énergies de perturbation dans les écoulements réactifs. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse, France.Google Scholar
Giauque, A., Huet, M. & Clero, F. 2012 Analytical analysis of indirect combustion noise in subcritical nozzles. Trans. ASME: J. Engng Gas Turbines Power 134, 111202.Google Scholar
Goh, C. S. & Morgans, A. S. 2011 Phase prediction of the response of choked nozzles to entropy and acoustic disturbances. J. Sound Vib. 330, 51845198.CrossRefGoogle Scholar
Goh, C. S. & Morgans, A. S. 2013 The influence of entropy waves on the thermoacoustic stability of a model combustor. Combust. Sci. Technol. 185, 249268.CrossRefGoogle Scholar
Hochgreb, S., Dennis, D., Ayranci, I., Bainbridge, W. & Cant, S. 2013 Forced and self-excited instabilities from lean premixed, liquid-fuelled aeroengine injectors at high pressures and temperatures. In Proceedings of ASME Turbo Expo, Paper GT2013-95311.Google Scholar
Howe, M. S. 2010 Indirect combustion noise. J. Fluid Mech. 659, 267288.CrossRefGoogle Scholar
Kaufmann, A., Nicoud, F. & Poinsot, T. 2002 Flow forcing techniques for numerical simulation of combustion instabilities. Combust. Flame 131, 371385.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1966 Course of Theoretical Physics, vol. 6: Fluid Mechanics, 3rd edn. Pergamon Press.Google Scholar
Leyko, M., Moreau, S., Nicoud, F. & Poinsot, T. 2010 Waves transmission and generation in turbine stages in a combustion–noise framework. In 16th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2010-4032.Google Scholar
Leyko, M., Moreau, S., Nicoud, F. & Poinsot, T. 2011 Numerical and analytical modelling of entropy noise in a supersonic nozzle with a shock. J. Sound Vib. 330, 39443958.CrossRefGoogle Scholar
Marble, F. E. 1973 Acoustic disturbance from gas non-uniformities convecting through a nozzle. In Interagency Symposium on University Research in Transportation Noise, Stanford University, Stanford, CA, pp. 547–561.Google Scholar
Marble, F. E. & Candel, S. M. 1977 Acoustic disturbance from gas non-uniformities convected through a nozzle. J. Sound Vib. 55, 225243.CrossRefGoogle Scholar
Mishra, A. & Bodony, D. J. 2013 Evaluation of actuator disk theory for predicting indirect combustion noise. J. Sound Vib. 332, 821838.CrossRefGoogle Scholar
Moase, W. H., Brear, M. J. & Manzie, C. 2007 The forced response of choked nozzles and supersonic diffusers. J. Fluid Mech. 585, 281304.CrossRefGoogle Scholar
Morfey, C. L. 1973 Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vib. 31, 391397.CrossRefGoogle Scholar
Motheau, E., Nicoud, F., Mery, Y. & Poinsot, T. 2013 Analysis and modelling of entropy modes in a realistic aeronautical gas turbine. In Proceedings of ASME Turbo Expo, Paper GT2013-94224.Google Scholar
Mühlbauer, B., Noll, B. & Aigner, M. 2009 Numerical investigation of the fundamental mechanism for entropy noise generation in aero-engines. Acta Acust. United With Acustica 95, 470478.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
Paschereit, C. O., Schuermans, B., Polifke, W. & Mattson, O. 2002 Measurement of transfer matrices and source terms of premixed flames. Trans. ASME: J. Engng Gas Turbines Power 124, 239247.Google Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129.CrossRefGoogle Scholar
Sigman, R. K. & Zinn, B. T. 1983 A finite element approach for predicting nozzle admittances. J. Sound Vib. 88, 117131.CrossRefGoogle Scholar
Stein, W. & Joyner, D. 2005 SAGE: system for algebra and geometry experimentation. ACM SIGSAM Bulletin 39, 6164.CrossRefGoogle Scholar
Stow, S. R., Dowling, A. P. & Hynes, T. P. 2002 Reflection of circumferential modes in a choked nozzle. J. Fluid Mech. 467, 215239.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.CrossRefGoogle Scholar
Thompson, K. W. 1990 Time dependent boundary conditions for hyperbolic systems. Part 2. J. Comput. Phys. 89, 439461.CrossRefGoogle Scholar
Wolf, P., Balakrishnan, R., Staffelbach, G., Gicquel, L. Y. M. & Poinsot, T. 2012 Using LES to study reacting flows and instabilities in annular combustion chambers. Flow Turbul. Combust. 88, 191206.CrossRefGoogle Scholar