Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-t6dlm Total loading time: 0.342 Render date: 2021-05-05T21:43:38.252Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A model of tear-film breakup with continuous mucin concentration and viscosity profiles

Published online by Cambridge University Press:  06 November 2018

Mohar Dey
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
Atul S. Vivek
Affiliation:
Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
Harish N. Dixit
Affiliation:
Department of Mechanical and Aerospace Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
Ashutosh Richhariya
Affiliation:
L. V. Prasad Eye Institute, Hyderabad, Telangana 500034, India
James J. Feng
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
Corresponding
E-mail address:

Abstract

We propose an alternative to the prevailing framework for modelling tear-film breakup, which posits a layered structure with a mucus layer next to the cornea and an aqueous layer on top. Experimental evidence shows continuous variation of mucin concentration throughout the tear film, with no distinct boundary between the two layers. Thus, we consider a continuous-viscosity model that replaces the mucus and aqueous layers by a single liquid layer with continuous profiles of mucin concentration and viscosity, which are governed by advection–diffusion of mucin. The lipids coating the tear film are treated as insoluble surfactants as previously, and slip is allowed on the ocular surface. Using the thin-film approximation, we carry out linear stability analysis and nonlinear numerical simulations of tear-film breakup driven by van der Waals attraction. Results show that for the same average viscosity, having more viscous material near the ocular surface stabilizes the film and prolongs the breakup time. Compared with the layered models, the continuous-viscosity model predicts film breakup times that are in better agreement with experimental data. Finally, we also suggest a hydrodynamic explanation for how pathological loss of membrane-associated mucins may lead to faster breakup.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Albertsmeyer, A.-C., Kakkassery, V., Spurr-Michaud, S., Beeks, O. & Gipson, I. K. 2010 Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp. Eye Res. 90 (3), 444451.CrossRefGoogle Scholar
Bandyopadhyay, D. & Sharma, A. 2006 Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J. Chem. Phys. 125, 054711.Google Scholar
Berger, R. & Corrsin, S. 1974 A surface tension gradient mechanism for driving the pre-corneal tear film after a blink. J. Biomech. 7, 225238.CrossRefGoogle Scholar
Braun, R. & King-Smith, P. E. 2007 Model problems for the tear film in a blink cycle: single equation models. J. Fluid Mech. 586, 465490.CrossRefGoogle Scholar
Braun, R. J. 2012 Dynamics of tear films. Annu. Rev. Fluid Mech. 44, 267297.CrossRefGoogle Scholar
Braun, R. J., Driscoll, T. A., Begley, C. G., King-Smith, P. E. & Siddique, J. I. 2018 On tear film breakup (TBU): dynamics and imaging. Math. Med. Biol. 35, 145180.CrossRefGoogle Scholar
Braun, R. J., Usha, R., McFadden, G. B., Driscoll, T. A., Cook, L. P. & King-Smith, P. E. 2012 Thin film dynamics on a prolate spheroid with application to the cornea. J. Engng Maths 73, 121138.CrossRefGoogle Scholar
Bron, A. J., Argüeso, P., Irkec, M. & Bright, F. V. 2015 Clinical staining of the ocular surface: mechanisms and interpretations. Prog. Retin. Eye Res. 44, 3661.CrossRefGoogle Scholar
Bron, A. J., Tiffany, J. M., Gouveia, S. M., Yokoi, N. & Voon, L. W. 2004 Functional aspects of the tear film lipid layer. Exp. Eye Res. 78, 347360.CrossRefGoogle Scholar
Bruna, M. & Breward, C. J. W. 2014 The infuence of non-polar lipids on tear fillm dynamics. J. Fluid Mech. 746, 565605.CrossRefGoogle Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 464494.CrossRefGoogle Scholar
Celli, J., Gregor, B., Turner, B., Afdhal, N. H., Bansil, R. & Erramilli, S. 2005 Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 6, 13291333.CrossRefGoogle Scholar
Chen, H. B., Yamabayashi, S., Tanaka, Y., Ohno, S. & Tsukahara, S. 1997 Structure and composition of rat precorneal tear film: a study by an in vitro cryofixation. Invest. Ophthalmol. Vis. Sci. 38, 381387.Google Scholar
Cho, P. & Douthwaite, W. 1992 Tear breakup time and the effect of lifting the eyelid during its measurement. Clin. Exp. Optom. 75, 231235.CrossRefGoogle Scholar
Craig, J. & Tomlinson, A. 1997 Importance of the tear film lipid layer in human tear film stability and evaporation. Optom. Vis. Sci. 33, 813.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 11311198.CrossRefGoogle Scholar
De Wit, A., Gallez, D. & Christov, C. I. 1994 Nonlinear evolution equations for thin liquid films with insoluble surfactants. Phys. Fluids 6, 32563266.CrossRefGoogle Scholar
Deng, Q., Braun, R. J. & Driscoll, T. A. 2014 Heat transfer and tear film dynamics over multiple blink cycles. Phys. Fluids 26, 071901.CrossRefGoogle Scholar
Dohlman, C. H., Friend, J., Kalevar, V., Yagoda, D. & Balazs, E. 1976 The glycoprotein (mucus) content of tears from normals and dry eye patients. Exp. Eye Res. 22, 359365.CrossRefGoogle Scholar
Ern, P., Charru, F. & Luchini, P. 2003 Stability analysis of a shear flow with strongly stratified viscosity. J. Fluid Mech. 496, 295312.CrossRefGoogle Scholar
Ghosh, S., Usha, R. & Sahu, K. C. 2014 Linear stability analysis of miscible two-fluid flow in a channel with velocity slip at the walls. Phys. Fluids 26, 014107.Google Scholar
Gipson, I. K. 2004 Distribution of mucins at the ocular surface. Exp. Eye Res. 78, 379388.CrossRefGoogle Scholar
Govindarajan, B. & Gipson, I. K. 2010 Membrane-tethered mucins have multiple functions on the ocular surface. Exp. Eye Res. 90, 655663.CrossRefGoogle Scholar
Gribbon, P. & Hardingham, T. E. 1998 Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J. 75, 10321039.CrossRefGoogle Scholar
Heryudono, A., Braun, R. J., Driscoll, T. A., Maki, K. L., Cook, L. P. & King-Smith, P. E. 2007 Single-equation models for the tear film in a blink cycle: realistic lid motion. Math. Med. Biol. 24, 347377.CrossRefGoogle Scholar
Hodges, R. R. & Dartt, D. A. 2013 Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp. Eye Res. 117, 6278.CrossRefGoogle Scholar
Holly, F. J. & Lemp, M. A. 1977 Tear physiology and dry eyes. Surv. Ophthalmol. 22, 6987.CrossRefGoogle Scholar
Inatomi, T., Spurr-Michaud, S., Tisdle, A. S., Zhan, Q., Feldman, S. T. & Gipson, I. K. 1996 Expression of secretory mucin genes by human conjunctival epithelia. Invest. Ophthalmol. Vis. Sci. 37, 16841692.Google Scholar
Jones, M. B., Please, C. P., McElwain, D. L., Fulford, G. R., Roberts, A. P. & Collins, M. J. 2005 Dynamics of tear film deposition and draining. Math. Med. Biol. 22, 265288.CrossRefGoogle ScholarPubMed
Jossic, L., Lefevre, P., Loubens, C., Magnin, A. & Corre, C. 2009 The fluid mechanics of shear-thinning tear substitutes. J. Non-Newtonian Fluid Mech. 161, 19.CrossRefGoogle Scholar
King-Smith, P. E., Begley, C. G. & Braun, R. J. 2018 Mechanisms, imaging and structure of tear film breakup. Ocul. Surf. 16, 430.CrossRefGoogle Scholar
Korb, D. R., Greiner, J. V. & Herman, J. 2001 Comparison of fluorescein break-up time measurement reproducibility using standard fluorescein strips versus the dry eye test (DET) method. Cornea 20, 811815.CrossRefGoogle Scholar
Lemp, M. A. & Hamill, J. R. 1973 Factors affecting tear film breakup in normal eyes. Arch. Ophthalmol. 89, 103105.CrossRefGoogle Scholar
Liu, H., Begley, C., Chen, M., Bradley, A., Bonanno, J., McNamara, N. A., Nelson, J. D. & Simpson, T. 2009 A link between tear instability and hyperosmolarity in dry eye. Invest. Ophthalmol. Vis. Sci. 50, 36713679.CrossRefGoogle ScholarPubMed
Mantelli, F. & Argueso, P. 2008 Functions of ocular surface mucins in health and disease. Curr. Opin. Allergy Clin. Immunol. 8, 477483.CrossRefGoogle ScholarPubMed
Matar, O. 2002 Nonlinear evolution of thin free viscous films in the presence of soluble surfactant. Phys. Fluids 14, 42164234.CrossRefGoogle Scholar
McCulley, J. P. & Shine, W. 1997 A compositional based model for the tear film lipid layer. Trans. Am. Ophthalmol. Soc. 95, 7993.Google ScholarPubMed
Mengher, L. S., Bron, A. J., Tonge, S. R. & Gilbert, D. J. 1985 A non-invasive instrument for clinical assessment of the precorneal tear film stability. Curr. Eye Res. 4, 17.CrossRefGoogle Scholar
Nagyová, B. & Tiffany, J. M. 1999 Components responsible for the surface tension of human tears. Curr. Eye Res. 19, 411.CrossRefGoogle Scholar
Norn, M. S. 1969 Desiccation of the precorneal film. Part I. Corneal wetting-time. Acta Ophthalmol. 47, 865880.CrossRefGoogle Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Peng, C. C., Cerretani, C., Braun, R. J. & Radke, C. J. 2014 Evaporation-driven instability of the precorneal tear film. Adv. Colloid Interface Sci. 206, 250264.CrossRefGoogle ScholarPubMed
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70 (2), 025201.Google Scholar
Prydal, J. I. & Campbell, F. W. 1992 Study of precorneal tear film thickness and structure by interferometry and confocal microscopy. Invest. Ophthalmol. Vis. Sci. 33, 19962005.Google ScholarPubMed
Ruckenstein, E. & Jain, R. K. 1974 Spontaneous rupture of thin liquid films. J. Chem. Soc., Faraday Trans. 2 70, 132147.CrossRefGoogle Scholar
Selinger, D. S., Selinger, R. C. & Reed, W. P. 1979 Resistance to infection of the external eye: the role of tears. Surv. Ophthalmol. 24, 3338.CrossRefGoogle Scholar
Sharma, A. 1998 Acid–base interactions in the cornea-tear film system: surface chemistry of corneal wetting, cleaning, lubrication, hydration and defense. J. Dispersion Sci. Technol. 19, 10311068.CrossRefGoogle Scholar
Sharma, A., Khanna, R. & Reiter, G. 1999 A thin film analog of the corneal mucus layer of the tear film: an enigmatic long range non-classical DLVO interaction in the breakup of thin polymer films. Colloids Surf. B 14, 223235.CrossRefGoogle Scholar
Sharma, A. & Ruckenstein, E. 1985 Mechanism of tear film rupture and formation of dry spots on cornea. J. Colloid Interface Sci. 106, 1227.CrossRefGoogle Scholar
Sharma, A. & Ruckenstein, E. 1986a An analytical nonlinear theory of thin film rupture and its application to wetting films. J. Colloid Interface Sci. 113, 456479.CrossRefGoogle Scholar
Sharma, A. & Ruckenstein, E. 1986b The role of lipid abnormalities, aqueous and mucus deficiencies in the tear film breakup, and implications for tear substitutes and contact lens tolerance. J. Colloid Interface Sci. 111, 834.CrossRefGoogle Scholar
Siddique, J. I. & Braun, R. J. 2015 Tear film dynamics with evaporation, osmolarity and surfactant transport. Appl. Math. Model. 39, 255269.CrossRefGoogle Scholar
Stevenson, W., Chauhan, S. K. & Dana, R. 2012 Dry eye disease: an immune-mediated ocular surface disorder. Arch. Ophthalmol. 130, 90100.CrossRefGoogle Scholar
Sullivan, B. D., Crews, L. A., Sonmez, B., de la Paz, M. F., Comert, E., Charoenrook, V., de Araujo, A. L., Pepose, J. S., Berg, M. S., Kosheleff, V. P. & Lemp, M. A. 2012 Clinical utility of objective tests for dry eye disease: variability over time and implications for clinical trials and disease management. Cornea 31, 10001008.CrossRefGoogle Scholar
Sweeney, D. F., Millar, T. J. & Raju, S. R. 2013 Tear film stability: a review. Exp. Eye Res. 117, 2838.CrossRefGoogle ScholarPubMed
Tiffany, J. M. 1991 The viscosity of human tears. Intl Ophthalmol. 15, 371376.CrossRefGoogle ScholarPubMed
Usha, R., Tammisola, O. & Govindarajan, R. 2013 Linear stability of miscible two-fluid flow down an incline. Phys. Fluids 25, 104102.CrossRefGoogle Scholar
Vanley, G. T., Irving, B. A., Leopold, H. & Gregg, T. H. 1977 Interpretation of tear film break-up. Arch. Ophthalmol. 95, 207209.CrossRefGoogle Scholar
William, M. B. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloid Interface Sci. 90, 220228.CrossRefGoogle Scholar
Winter, K. N., Anderson, D. M. & Braun, R. J. 2010 A model for wetting and evaporation of a post-blink precorneal tear film. Math. Med. Biol. 27, 211.CrossRefGoogle Scholar
Yañez-Soto, B., Mannis, M. J., Schwab, I. R., Li, J. Y., Leonard, B. C., Abbott, N. L. & Murphy, C. J. 2014 Interfacial phenomena and the ocular surface. Ocul. Surf. 12, 178201.CrossRefGoogle Scholar
Yokoi, N., Georgiev, G., Kato, H., Komuro, A., Sonomura, Y., Sotozono, C., Tsubota, K. & Kinoshita, S. 2017 Classification of fluorescein breakup patterns: a novel method of differential diagnosis for dry eye. Am. J. Ophthalmol. 180, 7285.CrossRefGoogle Scholar
Zhang, Y. L., Craster, R. V. & Matar, O. K. 2003a Analysis of tear film rupture: effect of non-Newtonian rheology. J. Colloid Interface Sci. 262, 130148.CrossRefGoogle Scholar
Zhang, Y. L., Craster, R. V. & Matar, O. K. 2003b Surfactant driven flows overlying a hydrophobic epithelium: film rupture in the presence of slip. J. Colloid Interface Sci. 264, 160175.CrossRefGoogle Scholar
Zhang, Y. L., Craster, R. V. & Matar, O. K. 2004 Rupture analysis of the corneal mucus layer of the tear film. Mol. Simul. 30, 167172.CrossRefGoogle Scholar
Zhong, L., Ketelaar, C. F., Braun, R. J., Begley, C. G. & King-Smith, P. E. 2018 Mathematical modelling of glob-driven tear film breakup. Math. Med. Biol. doi:10.1093/imammb/dqx021.CrossRefGoogle ScholarPubMed

Linked content

Please note a has been issued for this article.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A model of tear-film breakup with continuous mucin concentration and viscosity profiles
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A model of tear-film breakup with continuous mucin concentration and viscosity profiles
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A model of tear-film breakup with continuous mucin concentration and viscosity profiles
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *