Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-t7hbd Total loading time: 8.578 Render date: 2022-05-21T00:45:56.797Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame

Published online by Cambridge University Press:  23 July 2015

Shahram Karami*
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia
Evatt R. Hawkes
Affiliation:
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
Mohsen Talei
Affiliation:
School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
Jacqueline H. Chen
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
*
Email address for correspondence: s.karami@unsw.edu.au

Abstract

A turbulent lifted slot-jet flame is studied using direct numerical simulation (DNS). A one-step chemistry model is employed with a mixture-fraction-dependent activation energy which can reproduce qualitatively the dependence of the laminar burning rate on the equivalence ratio that is typical of hydrocarbon fuels. The basic structure of the flame base is first examined and discussed in the context of earlier experimental studies of lifted flames. Several features previously observed in experiments are noted and clarified. Some other unobserved features are also noted. Comparison with previous DNS modelling of hydrogen flames reveals significant structural differences. The statistics of flow and relative edge-flame propagation velocity components conditioned on the leading edge locations are then examined. The results show that, on average, the streamwise flame propagation and streamwise flow balance, thus demonstrating that edge-flame propagation is the basic stabilisation mechanism. Fluctuations of the edge locations and net edge velocities are, however, significant. It is demonstrated that the edges tend to move in an essentially two-dimensional (2D) elliptical pattern (laterally outwards towards the oxidiser, then upstream, then inwards towards the fuel, then downstream again). It is proposed that this is due to the passage of large eddies, as outlined in Su et al. (Combust. Flame, vol. 144 (3), 2006, pp. 494–512). However, the mechanism is not entirely 2D, and out-of-plane motion is needed to explain how flames escape the high-velocity inner region of the jet. Finally, the time-averaged structure is examined. A budget of terms in the transport equation for the product mass fraction is used to understand the stabilisation from a time-averaged perspective. The result of this analysis is found to be consistent with the instantaneous perspective. The budget reveals a fundamentally 2D structure, involving transport in both the streamwise and transverse directions, as opposed to possible mechanisms involving a dominance of either one direction of transport. It features upstream transport balanced by entrainment into richer conditions, while on the rich side, upstream turbulent transport and entrainment from leaner conditions balance the streamwise convection.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Gayed, R. G., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414 (1847), 389413.CrossRefGoogle Scholar
Akbarzadeh, M. & Birouk, M. 2014 Liftoff of a co-flowing non-premixed turbulent methane flame: effect of the fuel nozzle orifice geometry. Flow Turbul. Combust. 92 (4), 903929.CrossRefGoogle Scholar
Akiba, H., Ma, K., Chen, J. H. & Hawkes, E. R. 2007 Visualizing multivariate volume data from turbulent combustion simulations. Comput. Sci. Engng 9 (2), 7683.CrossRefGoogle Scholar
Arndt, C. M., Schießl, R., Gounder, J. D., Meier, W. & Aigner, M. 2013 Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: influence of temperature. Proc. Combust. Inst. 34 (1), 14831490.CrossRefGoogle Scholar
Baillot, F. & Demare, D. 2002 Physical mechanisms of a lifted nonpremixed flame stabilized in an acoustic field. Combust. Sci. Technol. 174 (8), 7398.CrossRefGoogle Scholar
Boulanger, J., Vervisch, L., Reveillon, J. & Ghosal, S. 2003 Effects of heat release in laminar diffusion flames lifted on round jets. Combust. Flame 134 (4), 355368.CrossRefGoogle Scholar
Boxx, I., Heeger, C., Gordon, R., Böhm, B., Aigner, M., Dreizler, A. & Meier, W. 2009a Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, $\text{C}_{3}\text{H}_{8}$ –argon jet diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32 (1), 905912.CrossRefGoogle Scholar
Boxx, I., Heeger, C., Gordon, R., Böhm, B., Dreizler, A. & Meier, W. 2009b On the importance of temporal context in interpretation of flame discontinuities. Combust. Flame 156 (1), 269271.CrossRefGoogle Scholar
Boxx, I. G., Meier, W. & Carter, C. D.2014 Investigation of turbulent lifted planar jet flames using high-speed laser imaging diagnostics. AIAA SciTech, 52nd Aerospace Sciences Meeting pp. AIAA 2014–0316.Google Scholar
Bray, K., Domingo, P. & Vervisch, L. 2005 Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 141 (4), 431437.CrossRefGoogle Scholar
Broadwell, J. E., Dahm, W. J. A. & Mungal, M. G. 1985 Blowout of turbulent diffusion flames. Symp. (Intl) Combust. 20 (1), 303310.CrossRefGoogle Scholar
Brown, C. D., Watson, K. A. & Lyons, K. M. 1999 Studies on lifted jet flames in coflow: the stabilization mechanism in the near- and far-fields. Flow Turbul. Combust. 62 (3), 249273.CrossRefGoogle Scholar
Buckmaster, J. 1996 Edge-flames and their stability. Combust. Sci. Technol. 115 (1–3), 4168.CrossRefGoogle Scholar
Buckmaster, J. 2002 Edge-flames. Prog. Energy Combust. Sci. 28 (5), 435475.CrossRefGoogle Scholar
Buckmaster, J. & Weber, R. 1996 Edge-flame-holding. Symp. (Intl) Combust. 26 (1), 11431149.CrossRefGoogle Scholar
Burgess, C. P. & Lawn, C. J. 1999 The premixture model of turbulent burning to describe lifted jet flames. Combust. Flame 119 (1), 95108.CrossRefGoogle Scholar
Cessou, A., Maurey, C. & Stepowski, D. 2004 Parametric and statistical investigation of the behavior of a lifted flame over a turbulent free-jet structure. Combust. Flame 137 (4), 458477.CrossRefGoogle Scholar
Chakraborty, N. & Cant, S. 2004 Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow–outflow configuration. Combust. Flame 137 (1), 129147.CrossRefGoogle Scholar
Chakraborty, N., Hesse, H. & Mastorakos, E. 2010 Numerical investigation of edge flame propagation behavior in an igniting turbulent planar jet. Combust. Sci. Technol. 182 (11–12), 17471781.CrossRefGoogle Scholar
Chakraborty, N. & Mastorakos, E. 2006 Numerical investigation of edge flame propagation characteristics in turbulent mixing layers. Phys. Fluids 18 (10), 105103.CrossRefGoogle Scholar
Chakraborty, N. & Mastorakos, E. 2008 Direct numerical simulations of localised forced ignition in turbulent mixing layers: the effects of mixture fraction and its gradient. Flow Turbul. Combust. 80, 155186.CrossRefGoogle Scholar
Chatakonda, O., Hawkes, E. R., Aspden, A. J., Kerstein, A. R., Kolla, H. & Chen, J. H. 2013 On the fractal characteristics of low Damköhler number flames. Combust. Flame 160 (11), 24222433.CrossRefGoogle Scholar
Chen, J. H., Choudhary, A., De Supinski, B., Devries, M., Hawkes, E. R., Klasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2 (1), 015001.CrossRefGoogle Scholar
Chen, J. H., Hawkes, E. R., Sankaran, R., Mason, S. D. & Im, H. G. 2006 Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: I. Fundamental analysis and diagnostics. Combust. Flame 145 (1), 128144.CrossRefGoogle Scholar
Chung, S. H. 2007 Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31 (1), 877892.CrossRefGoogle Scholar
Dahoe, A. E. & De Goey, L. P. H. 2003 On the determination of the laminar burning velocity from closed vessel gas explosions. J. Loss Prev. Process. Ind. 16 (6), 457478.CrossRefGoogle Scholar
Demare, D. & Baillot, F. 2001 The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame. Phys. Fluids 13 (9), 26622670.CrossRefGoogle Scholar
Domingo, P., Vervisch, L. & Bray, K. 2002 Partially premixed flamelets in LES of nonpremixed turbulent combustion. Combust. Theor. Model. 6 (4), 529551.CrossRefGoogle Scholar
Domingo, P., Vervisch, L. & Réveillon, J. 2005 DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air. Combust. Flame 140 (3), 172195.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1996 Unsteady strain rate and curvature effects in turbulent premixed methane–air flames. Combust. Flame 106 (1), 184202.CrossRefGoogle Scholar
Echekki, T. & Chen, J. H. 1998 Structure and propagation of methanol air triple flames. Combust. Flame 114 (12), 231245.CrossRefGoogle Scholar
Franzelli, B., Riber, E., Gicquel, L. Y. M. & Poinsot, T. 2012 Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combust. Flame 159 (2), 621637.CrossRefGoogle Scholar
Garrido-Lòpez, D. & Sarkar, S. 2005 Effects of imperfect premixing coupled with hydrodynamic instability on flame propagation. Proc. Combust. Inst. 30 (1), 621628.CrossRefGoogle Scholar
Ghosal, S. & Vervisch, L. 2000 Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation. J. Fluid Mech. 415, 227260.CrossRefGoogle Scholar
Gibson, C. H., Ashurst, W. T. & Kerstein, A. R. 1988 Mixing of strongly diffusive passive scalars like temperature by turbulence. J. Fluid Mech. 194, 261293.CrossRefGoogle Scholar
Gordon, R. L., Boxx, I., Carter, C., Dreizler, A. & Meier, W. 2012 Lifted diffusion flame stabilisation: conditional analysis of multi-parameter high-repetition rate diagnostics at the flame base. Flow Turbul. Combust. 88 (4), 503527.CrossRefGoogle Scholar
Gordon, R. L., Masri, A. R., Pope, S. B. & Goldin, G. M. 2007 A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theor. Model. 11 (3), 351376.CrossRefGoogle Scholar
Grout, R. W., Gruber, A., Kolla, H., Bremer, P. T., Bennett, J. C., Gyulassy, A. & Chen, J. H. 2012 A direct numerical simulation study of turbulence and flame structure in transverse jets analysed in jet-trajectory based coordinates. J. Fluid Mech. 706, 351383.CrossRefGoogle Scholar
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (03), 465495.CrossRefGoogle Scholar
Han, D. & Mungal, M. G. 2000 Observations on the transition from flame liftoff to flame blowout. Proc. Combust. Inst. 28 (1), 537543.CrossRefGoogle Scholar
Hasselbrink, E. F. Jr & Mungal, M. G. 1998 Characteristics of the velocity field near the instantaneous base of lifted non-premixed turbulent jet flames. Symp. (Intl) Combust. 27 (1), 867873.CrossRefGoogle Scholar
Hawkes, E. R., Chatakonda, O., Kolla, H., Kerstein, A. R. & Chen, J. H. 2012 A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combust. Flame 159 (8), 26902703.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2004 Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust. Flame 138 (3), 242258.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2006 Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame 144 (1), 112125.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R. & Chen, J. H.2007a Reignition dynamics in massively parallel direct numerical simulations of $\text{CO}/\text{H}_{2}$ jet flames. In 16th Australasian Fluid Mechanics Conference. School of Engineering, The University of Queensland, pp. 1271–1274.Google Scholar
Hawkes, E. R., Sankaran, R. & Chen, J. H.2007b A study of extinction and reignition dynamics in syngas jet flames using terascale direct numerical simulations: sensitivity to the choice of reacting scalar. In Proceedings of the Australian Combustion Symposium, pp. 46–49.Google Scholar
Hawkes, E. R., Sankaran, R., Chen, J. H., Kaiser, S. A. & Frank, J. H. 2009 An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proc. Combust. Inst. 32 (1), 14551463.CrossRefGoogle Scholar
Hawkes, E. R., Sankaran, R., Sutherland, J. C. & Chen, J. H. 2007c Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal $\text{CO}/\text{H}_{2}$ kinetics. Proc. Combust. Inst. 31 (1), 16331640.CrossRefGoogle Scholar
Heeger, C., Böhm, B., Ahmed, S. F., Gordon, R., Boxx, I., Meier, W., Dreizler, A. & Mastorakos, E. 2009 Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proc. Combust. Inst. 32 (2), 29572964.CrossRefGoogle Scholar
Hesse, H., Chakraborty, N. & Mastorakos, E. 2009 The effects of the Lewis number of the fuel on the displacement speed of edge flames in igniting turbulent mixing layers. Proc. Combust. Inst. 32 (1), 13991407.CrossRefGoogle Scholar
Hult, J., Meier, U., Meier, W., Harvey, A. & Kaminski, C. F. 2005 Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30 (1), 701709.CrossRefGoogle Scholar
Im, H. G. & Chen, J. H. 1999 Structure and propagation of triple flames in partially premixed hydrogen–air mixtures. Combust. Flame 119 (4), 436454.CrossRefGoogle Scholar
Im, H. G. & Chen, J. H. 2001 Effects of flow strain on triple flame propagation. Combust. Flame 126 (1), 13841392.CrossRefGoogle Scholar
Joedicke, A., Peters, N. & Mansour, M. 2005 The stabilization mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30 (1), 901909.CrossRefGoogle Scholar
Kalghatgi, G. T. 1984 Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41 (1–2), 1729.Google Scholar
Kaplan, C. R., Oran, E. S. & Baek, S. W. 1994 Stabilization mechanism of lifted jet diffusion flames. Symp. (Intl) Combust. 25 (1), 11831189.CrossRefGoogle Scholar
Karami, S., Talei, M., Hawkes, E. R. & Chatakonda, O.2013 Direct numerical simulation of a partially premixed turbulent, lifted flame. In Proceedings of the 9th Asia-Pacific Conference on Combustion, Gyeongju, South Korea.Google Scholar
Kelman, J. B., Eltobaji, A. J. & Masri, A. R. 1998 Laser imaging in the stabilisation region of turbulent lifted flames. Combust. Sci. Technol. 135 (1–6), 117134.CrossRefGoogle Scholar
Kennedy, C. A. & Carpenter, M. H. 1994 Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Maths 14 (4), 397433.CrossRefGoogle Scholar
Knudsen, E. & Pitsch, H. 2012 Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159 (1), 242264.CrossRefGoogle Scholar
Kolla, H., Grout, R. W., Gruber, A. & Chen, J. H. 2012 Mechanisms of flame stabilization and blowout in a reacting turbulent hydrogen jet in cross-flow. Combust. Flame 159 (8), 27552766.CrossRefGoogle Scholar
Krisman, A., Hawkes, E. R., Talei, M., Bhagatwala, A. & Chen, J. H. 2015 Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions. Proc. Combust. Inst. 35 (1), 9991006.CrossRefGoogle Scholar
Landau, L. D. 1944 On the theory of slow combustion. Acta Physicochim. USSR 19 (1), 7785.Google Scholar
Lawn, C. J. 2009 Lifted flames on fuel jets in co-flowing air. Prog. Energy Combust. Sci. 35 (1), 130.CrossRefGoogle Scholar
Luo, K. H. 1999 Combustion effects on turbulence in a partially premixed supersonic diffusion flame. Combust. Flame 119 (4), 417435.CrossRefGoogle Scholar
Luo, Z., Yoo, C. S., Richardson, E. S., Chen, J. H., Law, C. K. & Lu, T. 2012 Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow. Combust. Flame 159 (1), 265274.CrossRefGoogle Scholar
Lyons, K. M., Watson, K. A., Carter, C. D. & Donbar, J. M. 2007 Upstream islands of flame in lifted-jet partially premixed combustion. Combust. Sci. Technol. 179 (5), 10291037.CrossRefGoogle Scholar
Mansour, M. S. 2003 Stability characteristics of lifted turbulent partially premixed jet flames. Combust. Flame 133 (3), 263274.CrossRefGoogle Scholar
Mansour, M. S. 2004 The flow field structure at the base of lifted turbulent partially premixed jet flames. Exp. Therm. Fluid Sci. 28 (7), 771779.CrossRefGoogle Scholar
Maurey, C., Cessou, A., Lecordier, B. & Stepowski, D. 2000 Statistical flow dynamic properties conditioned on the oscillating stabilization location of turbulent lifted flame. Proc. Combust. Inst. 28 (1), 545551.CrossRefGoogle Scholar
Mehravaran, K. & Jaberi, F. A. 2004 Direct numerical simulation of transitional and turbulent buoyant planar jet flames. Phys. Fluids 16 (12), 44434461.CrossRefGoogle Scholar
Miake-Lye, R. C. & Hammer, J. A. 1989 Lifted turbulent jet flames: a stability criterion based on the jet large-scale structure. Symp. (Intl) Combust. 22 (1), 817824.CrossRefGoogle Scholar
Mizobuchi, Y., Shinio, J., Ogawa, S. & Takeno, T. 2005 A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30 (1), 611619.CrossRefGoogle Scholar
Mizobuchi, Y., Tachibana, S., Shinio, J., Ogawa, S. & Takeno, T. 2002 A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29 (2), 20092015.CrossRefGoogle Scholar
Müller, C. M., Breitbach, H. & Peters, N. 1994 Partially premixed turbulent flame propagation in jet flames. Symp. (Intl) Combust. 25 (1), 10991106.CrossRefGoogle Scholar
Muniz, L. & Mungal, M. G. 1997 Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111 (1), 1631.CrossRefGoogle Scholar
Namazian, M., Schefer, R. W. & Kelly, J. 1988 Scalar dissipation measurements in the developing region of a jet. Combust. Flame 74 (2), 147160.CrossRefGoogle Scholar
Nishiki, S., Hasegawa, T., Borghi, R. & Himeno, R. 2006 Modelling of turbulent scalar flux in turbulent premixed flames based on DNS databases. Combust. Theor. Model. 10 (1), 3955.CrossRefGoogle Scholar
Noda, S., Mori, H., Hongo, Y. & Nishioka, M. 2005 Nonpremixed flamelet statistics at flame base of lifted turbulent jet nonpremixed flames. JSME Intl J. 48 (1), 7582.CrossRefGoogle Scholar
Pantano, C. 2004 Direct simulation of non-premixed flame extinction in a methane–air jet with reduced chemistry. J. Fluid Mech. 514, 231270.CrossRefGoogle Scholar
Passot, T. & Pouquet, A. 1987 Numerical simulation of compressible homogeneous flows in the turbulent regime. J. Fluid Mech. 181, 441466.CrossRefGoogle Scholar
Peters, N. & Kee, R. J. 1987 The computation of stretched laminar methane–air diffusion flames using a reduced four-step mechanism. Combust. Flame 68 (1), 1729.CrossRefGoogle Scholar
Peters, N. & Williams, F. A. 1983 Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423429.CrossRefGoogle Scholar
Peters, N. & Williams, F. A. 1987 The asymptotic structure of stoichiometric methane–air flames. Combust. Flame 68 (2), 185207.CrossRefGoogle Scholar
Pitsch, H. & Fedotov, S. 2000 Stochastic modeling of scalar dissipation rate fluctuations in non-premixed turbulent combustion. Center Turbul. Res. Annu. Res. Briefs 91, 91103.Google Scholar
Pitts, W. M. 1989 Importance of isothermal mixing processes to the understanding of lift-off and blowout of turbulent jet diffusion flames. Combust. Flame 76 (2), 197212.CrossRefGoogle Scholar
Pope, S. B. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Punati, N., Sutherland, J. C., Kerstein, A. R., Hawkes, E. R. & Chen, J. H. 2011 An evaluation of the one-dimensional turbulence model: comparison with direct numerical simulations of $\text{CO}/\text{H}_{2}$ jets with extinction and reignition. Proc. Combust. Inst. 33 (1), 15151522.CrossRefGoogle Scholar
Ruetsch, G. R., Vervisch, L. & Liñán, A. 1995 Effects of heat release on triple flames. Phys. Fluids 7 (6), 14471454.CrossRefGoogle Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2006 Direct numerical simulations of turbulent lean premixed combustion. J. Phys.: Conf. Ser. 46 (1), 3842.Google Scholar
Schefer, R. W. 1997a Flame sheet imaging using CH chemiluminescence. Combust. Sci. Technol. 126 (1–6), 255279.CrossRefGoogle Scholar
Schefer, R. W. 1997b Three-dimensional structure of lifted, turbulent-jet flames. Combust. Sci. Technol. 125 (1–6), 371394.CrossRefGoogle Scholar
Schefer, R. W. & Goix, P. J. 1998 Mechanism of flame stabilization in turbulent, lifted-jet flames. Combust. Flame 112 (4), 559574.CrossRefGoogle Scholar
Schefer, R. W., Namazian, M., Filtopoulos, E. E. J. & Kelly, J. 1994a Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames. Symp. (Intl) Combust. 25 (1), 12231231.CrossRefGoogle Scholar
Schefer, R. W., Namazian, M. & Kelly, J. 1994b Stabilization of lifted turbulent-jet flames. Combust. Flame 99 (1), 7586.CrossRefGoogle Scholar
Sen, B. A., Hawkes, E. R. & Menon, S. 2010 Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combust. Flame 157 (3), 566578.CrossRefGoogle Scholar
Seshadri, K. & Peters, N. 1988 Asymptotic structure and extinction of methane–air diffusion flames. Combust. Flame 73 (1), 2344.CrossRefGoogle Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr, Lissianski, V. & Qin, Z. 1999 GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.Google Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.CrossRefGoogle Scholar
Stårner, S. H., Bilger, R. W., Frank, J. H., Marran, D. F. & Long, M. B. 1996 Mixture fraction imaging in a lifted methane jet flame. Combust. Flame 107 (3), 307313.CrossRefGoogle Scholar
Su, L. K., Sun, O. S. & Mungal, M. G. 2006 Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144 (3), 494512.CrossRefGoogle Scholar
Tacke, M. M., Geyer, D., Hassel, E. P. & Janicka, J. 1998 A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Symp. (Intl) Combust. 27, 11571165.CrossRefGoogle Scholar
Takahashi, F., John Schmoll, W. J. & Katta, V. R. 1998 Attachment mechanisms of diffusion flames. Symp. (Intl) Combust. 27 (1), 675684.CrossRefGoogle Scholar
Takahashi, F. & Schmoll, W. J. 1991 Lifting criteria of jet diffusion flames. Symp. (Intl) Combust. 23 (1), 677683.CrossRefGoogle Scholar
Tanahashi, M., Fujimura, M. & Miyauchi, T. 2000 Coherent fine-scale eddies in turbulent premixed flames. Proc. Combust. Inst. 28 (1), 529535.CrossRefGoogle Scholar
Upatnieks, A., Driscoll, J. F. & Ceccio, S. L. 2002 Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame. Proc. Combust. Inst. 29 (2), 18971903.CrossRefGoogle Scholar
Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. & Ceccio, S. L. 2004 Liftoff of turbulent jet flames – assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138 (3), 259272.CrossRefGoogle Scholar
Vanquickenborne, L. & van Tiggelen, A. 1966 The stabilization mechanism of lifted diffusion flames. Combust. Flame 10 (1), 5969.CrossRefGoogle Scholar
Vedarajan, T. G. & Buckmaster, J. 1998 Edge-flames in homogeneous mixtures. Combust. Flame 114 (1), 267273.CrossRefGoogle Scholar
Veynante, D., Trouvé, A., Bray, K. N. C. & Mantel, T. 1997 Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263293.CrossRefGoogle Scholar
Watson, K. A., Lyons, K. M., Carter, C. D. & Donbar, J. M. 2002 Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted $\text{CH}_{4}$ /air diffusion flames. Proc. Combust. Inst. 29 (2), 19051912.CrossRefGoogle Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 1999 Scalar and velocity field measurements in a lifted $\text{CH}_{4}$ –air diffusion flame. Combust. Flame 117 (1–2), 257271.CrossRefGoogle Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 2000 Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame. Combust. Flame 123 (12), 252265.CrossRefGoogle Scholar
Watson, K. A., Lyons, K. M., Donbar, J. M. & Carter, C. D. 2003 On scalar dissipation and partially premixed flame propagation. Combust. Sci. Technol. 175 (4), 649664.CrossRefGoogle Scholar
Wohl, K., Kapp, N. M. & Gazley, C. 1949 The stability of open flames. Symp. Combust. Flame Explosion Phenom. 3 (1), 321.CrossRefGoogle Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Symp. (Intl) Combust. 26 (1), 2734.CrossRefGoogle Scholar
Yoo, C. S., Richardson, E. S., Sankaran, R. & Chen, J. H. 2011 A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow. Proc. Combust. Inst. 33 (1), 16191627.CrossRefGoogle Scholar
Yoo, C. S., Sankaran, R. & Chen, J. H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 640, 453481.CrossRefGoogle Scholar
Yu, H., Wang, C. & Ma, K. 2008 Massively parallel volume rendering using 2–3 swap image compositing. In Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, vol. 48, pp. 111. IEEE.Google Scholar
Yuen, F. T. C. & Gülder, Ö. L. 2013 Turbulent premixed flame front dynamics and implications for limits of flamelet hypothesis. Proc. Combust. Inst. 34 (1), 13931400.CrossRefGoogle Scholar

Karami et al. supplementary movie

Three-dimensional volume rendering of the vorticity magnitude (blue) and reaction rate (red/orange). (Only the region x/H<12 is shown.)

Download Karami et al. supplementary movie(Video)
Video 62 MB

Karami et al. supplementary movie

Three-dimensional volume rendering of the vorticity magnitude (blue) and reaction rate (red/orange). (Only the region x/H<12 is shown.)

Download Karami et al. supplementary movie(Video)
Video 50 MB
40
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *