Skip to main content Accessibility help
Hostname: page-component-78bd46657c-j4m62 Total loading time: 0.525 Render date: 2021-05-09T04:33:01.440Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A mechanism for jet drift over topography

Published online by Cambridge University Press:  26 April 2018

Hemant Khatri
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
Pavel Berloff
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
E-mail address:


The dynamics of multiple alternating oceanic jets has been studied in the presence of a simple bottom topography with constant slope in the zonal direction. A baroclinic quasi-geostrophic model forced with a horizontally uniform and vertically sheared background flow generates mesoscale eddies and jets that are tilted from the zonal direction and drift with constant speed. The governing dynamical equations are rewritten in a tilted frame of reference moving with the jets, and the cross-jet time-mean profiles of the linear and nonlinear stress terms are analysed. Here, the linear stress terms are present because of the zonally asymmetric topography. It is demonstrated that the linear dynamics controls the drift mechanism. Also, it is found that the drifting jets are directly forced by the imposed vertical shear, whereas the eddies oppose the jets, although this is limited to continuously forced dissipative systems. This role of the eddies is opposite to the one in the classical baroclinic model of stationary, zonally symmetric multiple jets. This is expected to be more generic in the ocean, which is zonally asymmetric nearly everywhere.

JFM Papers
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.


Abernathey, R. & Cessi, P. 2014 Topographic enhancement of eddy efficiency in baroclinic equilibration. J. Phys. Oceanogr. 44 (8), 21072126.CrossRefGoogle Scholar
Abernathey, R., Marshall, J., Mazloff, M. & Shuckburgh, E. 2010 Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr. 40 (1), 170184.CrossRefGoogle Scholar
Arbic, B. K. & Flierl, G. R. 2004 Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr. 34 (1), 7793.2.0.CO;2>CrossRefGoogle Scholar
Baldwin, M. P., Rhines, P. B., Huang, H. P. & McIntyre, M. E. 2007 The jet-stream conundrum. Science 315 (5811), 467468.CrossRefGoogle ScholarPubMed
Barthel, A., Hogg, A., Waterman, S. & Keating, S. 2017 Jet–topography interactions affect energy pathways to the deep Southern Ocean. J. Phys. Oceanogr. 47 (7), 17991816.Google Scholar
Beebe, R. F., Ingersoll, A. P., Hunt, G. E., Mitchell, J. L. & Müller, J. P. 1980 Measurements of wind vectors, eddy momentum transports, and energy conversions in Jupiter’s atmosphere from Voyager 1 images. Geophys. Res. Lett. 7 (1), 14.CrossRefGoogle Scholar
Berloff, P. 2005a On dynamically consistent eddy fluxes. Dyn. Atmos. Oceans 38 (3), 123146.CrossRefGoogle Scholar
Berloff, P. 2005b On rectification of randomly forced flows. J. Mar. Res. 63 (3), 497527.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2013a On spectral analysis of mesoscale eddies. Part I: linear analysis. J. Phys. Oceanogr. 43 (12), 25052527.CrossRefGoogle Scholar
Berloff, P. & Kamenkovich, I. 2013b On spectral analysis of mesoscale eddies. Part II: nonlinear analysis. J. Phys. Oceanogr. 43 (12), 25282544.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009a A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.CrossRefGoogle Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009b A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr. 39 (11), 27112734.CrossRefGoogle Scholar
Berloff, P., Karabasov, S., Farrar, J. T. & Kamenkovich, I. 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.CrossRefGoogle Scholar
Boland, E., Thompson, A. F., Shuckburgh, E. & Haynes, P. 2012 The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr. 42 (10), 16351651.CrossRefGoogle Scholar
Buckingham, C. E. & Cornillon, P. C. 2013 The contribution of eddies to striations in absolute dynamic topography. J. Geophys. Res. Oceans 118 (1), 448461.CrossRefGoogle Scholar
Chan, C. J., Plumb, R. A. & Cerovecki, I. 2007 Annular modes in a multiple migrating zonal jet regime. J. Atmos. Sci. 64 (11), 40534068.CrossRefGoogle Scholar
Charney, J. C. 1971 Geostrophic turbulence. J. Atmos. Sci. 28, 10871095.2.0.CO;2>CrossRefGoogle Scholar
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K. & Siwertz, N. 1998 Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28 (3), 433460.2.0.CO;2>CrossRefGoogle Scholar
Chemke, R. & Kaspi, Y. 2015a The latitudinal dependence of atmospheric jet scales and macroturbulent energy cascades. J. Atmos. Sci. 72 (10), 38913907.CrossRefGoogle Scholar
Chemke, R. & Kaspi, Y. 2015b Poleward migration of eddy-driven jets. J Adv. Model. Earth Syst. 7 (3), 14571471.CrossRefGoogle Scholar
Chen, C. & Kamenkovich, I. 2013 Effects of topography on baroclinic instability. J. Phys. Oceanogr. 43 (4), 790804.CrossRefGoogle Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2015 On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr. 45 (3), 927940.CrossRefGoogle Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2016 Eddy trains and striations in quasigeostrophic simulations and the ocean. J. Phys. Oceanogr. 46 (9), 28072825.Google Scholar
Cho, J. Y. K. & Polvani, L. M. 1996 The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (6), 15311552.CrossRefGoogle Scholar
Connaughton, C. P., Nadiga, B. T., Nazarenko, S. V. & Quinn, B. E. 2010 Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech. 654, 207231.CrossRefGoogle Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.CrossRefGoogle Scholar
Cravatte, S., Kessler, W. S. & Marin, F. 2012 Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr. 42 (9), 14751485.CrossRefGoogle Scholar
Cravatte, S., Kestenare, E., Marin, F., Dutrieux, P. & Firing, E. 2017 Subthermocline and intermediate zonal currents in the tropical Pacific Ocean: paths and vertical structure. J. Phys. Oceanogr. 47 (9), 23052324.Google Scholar
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855874.CrossRefGoogle Scholar
Dunkerton, T. J. & Scott, R. K. 2008 A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65 (4), 11051136.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.CrossRefGoogle Scholar
Gierasch, P. J., Conrath, B. J. & Magalha, J. A. 1986 Zonal mean properties of Jupiter’s upper troposphere from Voyager infrared observations. Icarus 67 (3), 456483.CrossRefGoogle Scholar
Hannachi, A., Jolliffe, I. T. & Stephenson, D. B. 2007 Empirical orthogonal functions and related techniques in atmospheric science: a review. Intl J. Climatol. 27 (9), 11191152.CrossRefGoogle Scholar
Hart, J. E. 1975 Baroclinic instability over a slope. Part I: linear theory. J. Phys. Oceanogr. 5 (4), 625633.2.0.CO;2>CrossRefGoogle Scholar
Hristova, H. G., Pedlosky, J. & Spall, M. A. 2008 Radiating instability of a meridional boundary current. J. Phys. Oceanogr. 38 (10), 22942307.CrossRefGoogle Scholar
Huang, H. P. & Robinson, W. A. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55 (4), 611632.2.0.CO;2>CrossRefGoogle Scholar
Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M. & Müller, J. P. 1981 Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. Space Phys. 86 (A10), 87338743.CrossRefGoogle Scholar
Ingersoll, A. P., Gierasch, P. J., Banfield, D., Vasavada, A. R. & Team, G. I. 2000 Moist convection as an energy source for the large-scale motions in Jupiter’s atmosphere. Nature 403 (6770), 630632.CrossRefGoogle ScholarPubMed
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr. 39 (6), 13611379.CrossRefGoogle Scholar
Karabasov, S. A., Berloff, P. & Goloviznin, V. M. 2009 Cabaret in the ocean gyres. Ocean Model. 30 (2), 155168.CrossRefGoogle Scholar
Kramer, W., van Buren, M. G., Clercx, H. J. H. & van Heijst, G. J. F. 2006 𝛽-plane turbulence in a basin with no-slip boundaries. Phys. Fluids 18 (2), 026603.CrossRefGoogle Scholar
Lu, J. & Speer, K. 2010 Topography, jets, and eddy mixing in the Southern Ocean. J. Mar. Res. 68 (3–1), 479502.CrossRefGoogle Scholar
Maltrud, M. E. & Vallis, G. K. 1991 Energy spectra and coherent structures in forced two-dimensional and beta-plane turbulence. J. Fluid Mech. 228, 321342.Google Scholar
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65 (6), 19551966.CrossRefGoogle Scholar
Maximenko, N. A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.CrossRefGoogle Scholar
McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings? J. Meteorol. Soc. Japan II 60 (1), 3765.Google Scholar
Melnichenko, O. V., Maximenko, N. A., Schneider, N. & Sasaki, H. 2010 Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model. Ocean Dyn. 60 (3), 653666.CrossRefGoogle Scholar
Nadiga, B. T. 2006 On zonal jets in oceans. Geophys. Res. Lett. 33, L12607.CrossRefGoogle Scholar
Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35 (4), 474488.CrossRefGoogle Scholar
Panetta, R. L. 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50 (14), 20732106.2.0.CO;2>CrossRefGoogle Scholar
Qiu, B., Chen, S. & Sasaki, H. 2013 Generation of the North Equatorial Undercurrent jets by triad baroclinic Rossby wave interactions. J. Phys. Oceanogr. 43 (12), 26822698.CrossRefGoogle Scholar
Read, P. L., Conrath, B. J., Fletcher, L. N., Gierasch, P. J., Simon-Miller, A. A. & Zuchowski, L. C. 2009 Mapping potential vorticity dynamics on Saturn: zonal mean circulation from Cassini and Voyager data. Planet. Space Sci. 57 (14), 16821698.CrossRefGoogle Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (03), 417443.CrossRefGoogle Scholar
Richards, K. J., Maximenko, N. A., Bryan, F. O. & Sasaki, H. 2006 Zonal jets in the Pacific Ocean. Geophys. Res. Lett. 33, L03605.CrossRefGoogle Scholar
Scott, R. K. & Polvani, L. M. 2007 Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets. J. Atmos. Sci. 64 (9), 31583176.CrossRefGoogle Scholar
Sinha, B. & Richards, K. J. 1999 Jet structure and scaling in Southern Ocean models. J. Phys. Oceanogr. 29 (6), 11431155.2.0.CO;2>CrossRefGoogle Scholar
Smith, S. 2007 Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: shear dispersion of potential vorticity. J. Phys. Oceanogr. 37 (4), 10371050.CrossRefGoogle Scholar
Sokolov, S. & Rintoul, S. R. 2007 Multiple jets of the Antarctic circumpolar current south of Australia. J. Phys. Oceanogr. 37 (5), 13941412.CrossRefGoogle Scholar
Srinivasan, K. 2013 Stochastically Forced Zonal Flows. University of California.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.CrossRefGoogle Scholar
Stern, A., Nadeau, L. P. & Holland, D. 2015 Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr. 45 (9), 23152338.CrossRefGoogle Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64 (9), 33123327.CrossRefGoogle Scholar
Thompson, A. F. 2010 Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr. 40 (2), 257278.CrossRefGoogle Scholar
Thompson, A. F. & Naveira Garabato, A. C. 2014 Equilibration of the Antarctic circumpolar current by standing meanders. J. Phys. Oceanogr. 44 (7), 18111828.CrossRefGoogle Scholar
Thompson, A. F. & Richards, K. J. 2011 Low frequency variability of Southern Ocean jets. J. Geophys. Res. Oceans 116, C09022.CrossRefGoogle Scholar
Thompson, A. F. & Young, W. R. 2007 Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64 (9), 32143231.CrossRefGoogle Scholar
Tréguier, A. M. & Panetta, R. L. 1994 Multiple zonal jets in a quasigeostrophic model of the Antarctic circumpolar current. J. Phys. Oceanogr. 24 (11), 22632277.2.0.CO;2>CrossRefGoogle Scholar
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.Google Scholar
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23 (7), 13461362.2.0.CO;2>CrossRefGoogle Scholar
Van Sebille, E., Kamenkovich, I. & Willis, J. K. 2011 Quasi-zonal jets in 3-D Argo data of the Northeast Atlantic. Geophys. Res. Lett. 38, L02606.CrossRefGoogle Scholar
Wang, J., Spall, M. A., Flierl, G. R. & Malanotte-Rizzoli, P. 2012 A new mechanism for the generation of quasi-zonal jets in the ocean. Geophys. Res. Lett. 39, L10601.CrossRefGoogle Scholar
Williams, G. P. 1979 Planetary circulations: 2. The Jovian quasi-geostrophic regime. J. Atmos. Sci. 36 (5), 932969.2.0.CO;2>CrossRefGoogle Scholar
Williams, G. P. 2003 Jovian dynamics. Part III: multiple, migrating, and equatorial jets. J. Atmos. Sci. 60 (10), 12701296.2.0.CO;2>CrossRefGoogle Scholar
Young, R. M. B. & Read, P. L. 2017 Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer. Nat. Phys. 13 (11), 1135.Google Scholar
Youngs, M. K., Thompson, A. F., Lazar, A. & Richards, K. 2017 ACC meanders, energy transfer, and mixed barotropic–baroclinic instability. J. Phys. Oceanogr. 47 (6), 12911305.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A mechanism for jet drift over topography
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A mechanism for jet drift over topography
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A mechanism for jet drift over topography
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *