Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-kpmwg Total loading time: 0.281 Render date: 2021-12-09T12:16:57.274Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Laminar condensation on a moving drop. Part 2. Numerical solutions

Published online by Cambridge University Press:  20 April 2006

J. N. Chung
Affiliation:
Department of Mechanical Engineering, Washington State University, Pullman, WA 99164–2920
P. S. Ayyaswamy
Affiliation:
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104
S. S. Sadhal
Affiliation:
Department of Mechanical Engineering, University of Southern California, Los Angeles, CA 90089–1453

Abstract

In this paper, we investigate the problem of transient laminar condensation on a moving drop by the semianalytical series-truncation method. The objectives are to assess the validity and the accuracy of the matched-asymptotic method employed in Part 1. The fluid flow and thermodynamic variables are expanded as complete series of Legendre polynomials. The resulting transient momentum, energy and species equations are integrated numerically. The numerical scheme basically involves a three-point central difference for the spatial derivatives and a backward difference expression for the temporal derivatives. The finite-difference equations have been solved by the strongly implicit procedure. Good agreement of the fully transient numerical results with the singular perturbation approximation results of Part 1 lends credibility to a quasi-steady treatment of the continuous phase. The computational time requirements for the fully numerical solutions increase with decreasing non-condensable gas mass fraction in the bulk environment.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basset, A. B. 1888 A Treatise on Hydrodynamics, vol. 2, chap. 22. Deighton Bell. [Republished 1961 by Dover.]
Chung, J. N., Ayyaswamy, P. S. & Sadhal, S. S. 1984 Laminar condensation on a moving drop. Part 1. Singular perturbation technique J. Fluid Mech. 139, 105130.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles, p. 287. Academic.
Dennis, S. C. R., Walker, J. D. A. & Hudson, J. D. 1973 Heat transfer from a sphere at low Reynolds numbers J. Fluid Mech. 60, 273283.Google Scholar
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Macmillan.
Rotenberg, M., Bivins, R., Metropolis, N. & Wooten, J. K. 1959 The 3-j and 6-j symbols. MIT Press.
Sadhal, S. S. & Ayyaswamy, P. S. 1983 Flow past a liquid drop with a large non-uniform radial velocity J. Fluid Mech. 133, 6581.Google Scholar
Stone, H. L. 1968 Iterative solution of the implicit approximation of multidimensional partial differential equations Siam J. Numer. Anal. 5, 530558.Google Scholar
Talman, J. D. 1968 Special Functions. Benjamin.
Van Dyke, M. 1965 A method of series-truncation applied to some problems in fluid mechanics. Stanford Univ. Rep. SUDAER no. 247.Google Scholar
22
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Laminar condensation on a moving drop. Part 2. Numerical solutions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Laminar condensation on a moving drop. Part 2. Numerical solutions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Laminar condensation on a moving drop. Part 2. Numerical solutions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *