Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-jn9wc Total loading time: 0.262 Render date: 2021-05-16T04:30:19.320Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids

Published online by Cambridge University Press:  06 August 2018

Dhiya Alghalibi
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, S-100 44 Stockholm, Sweden College of Engineering, Kufa University, Al Najaf, Iraq
Iman Lashgari
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, S-100 44 Stockholm, Sweden
Luca Brandt
Affiliation:
Linné Flow Centre and SeRC (Swedish e-Science Research Centre), KTH Mechanics, S-100 44 Stockholm, Sweden
Sarah Hormozi
Affiliation:
Department of Mechanical Engineering, Ohio University, Athens, OH 45701-2979, USA
Corresponding
E-mail address:

Abstract

We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$ ) and particle Reynolds numbers ( $0.1\leqslant Re_{p}\leqslant 10$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. (J. Rheol., vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$ . The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$ .

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Amarsid, L., Delenne, J.-Y., Mutabaruka, P., Monerie, Y., Perales, F. & Radjai, F. 2017 Viscoinertial regime of immersed granular flows. Phys. Rev. E 96 (1), 012901.Google ScholarPubMed
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Bagnold, R. 1954 Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. A 225, 4963.CrossRefGoogle Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.CrossRefGoogle Scholar
Batchelor, G. K. 1977 The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97117.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassanger, O. 1987 Dynamics of Polymeric Liquids, 2nd edn, vol. 1. Wiley.Google Scholar
Bonnoit, C., Lanuza, J., Lindner, A. & Clement, E. 2010 Mesoscopic length scale controls the rheology of dense suspensions. Phys. Rev. Lett. 105 (10), 108302.CrossRefGoogle ScholarPubMed
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111 (23), 238301.CrossRefGoogle ScholarPubMed
Boyer, F., Guazzelli, É. & Pouliquen, O. 2011 Unifying suspension and granular rheology. Phys. Rev. Lett. 107 (18), 188301.CrossRefGoogle ScholarPubMed
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3), 242251.CrossRefGoogle Scholar
Breugem, W.-P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231, 44694498.CrossRefGoogle Scholar
Cassar, C., Nicolas, M. & Pouliquen, O. 2005 Submarine granular flows down inclined planes. Phys. Fluids 17 (10), 103301.CrossRefGoogle Scholar
Chateau, X., Ovarlez, G. & Trung, K. L. 2008 Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52, 489506.CrossRefGoogle Scholar
Costa, P., Boersma, B. J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92, 053012.Google ScholarPubMed
Costa, P., Picano, F., Brandt, L. & Breugem, W.-P. 2016 Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 134501.CrossRefGoogle ScholarPubMed
Coussot, P., Tocquer, L., Lanos, C. & Ovarlez, G. 2009 Macroscopic versus local rheology of yield stress fluids. J. Non-Newtonian Fluid Mech. 158 (1), 8590.CrossRefGoogle Scholar
Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É. 2011 Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 2639.CrossRefGoogle Scholar
Cwalina, C. D. & Wagner, N. J. 2014 Material properties of the shear-thickened state in concentrated near hard-sphere colloidal dispersions. J. Rheol. 58 (4), 949967.CrossRefGoogle Scholar
Dagois-Bohy, S., Hormozi, S., Guazzelli, E. & Pouliquen, O. 2015 Rheology of dense suspensions of non-colloidal spheres in yield-stress fluids. J. Fluid Mech. 776, R2–1R2–11.CrossRefGoogle Scholar
Dbouk, T., Lemaire, E., Lobry, L. & Moukalled, F. 2013a Shear-induced particle migration: Predictions from experimental evaluation of the particle stress tensor. J. Non-Newtonian Fluid Mech. 198, 7895.CrossRefGoogle Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013b Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.CrossRefGoogle Scholar
Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J. F. 2009 Particle pressure in a sheared suspension: A bridge from osmosis to granular dilatancy. Phys. Rev. Lett. 102 (10), 108301.CrossRefGoogle Scholar
DeGiuli, E., Düring, G., Lerner, E. & Wyart, M. 2015 Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91 (6), 062206.Google ScholarPubMed
Dontsov, E. & Peirce, A. 2014 Slurry flow, gravitational settling, and a proppant transport model for hydraulic fractures. J. Fluid Mech. 760, 567590.CrossRefGoogle Scholar
Einstein, A. 1906 A new determination of the molecular dimensions. Ann. Phys. 324 (2), 289306.CrossRefGoogle Scholar
Einstein, A. 1911 Berichtigung zu meiner Arbeit: eine neue Bestimmung der Moleküldimensionen. Ann. Phys. 339 (3), 591592.CrossRefGoogle Scholar
Firouznia, M., Metzger, B., Ovarlez, G. & Hormozi, S. 2018 The interaction of two spheres in simple shear flows of yield stress fluids. J. Non-Newtonian Fluid Mech. 255, 1938.CrossRefGoogle Scholar
Fornari, W., Brandt, L., Chaudhuri, P., Lopez, C. U., Mitra, D. & Picano, F. 2016 Rheology of confined non-Brownian suspensions. Phys. Rev. Lett. 116 (1), 018301.CrossRefGoogle ScholarPubMed
Henann, D. L. & Kamrin, K. 2014 Continuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett. 113 (17), 178001.CrossRefGoogle ScholarPubMed
Hormozi, S. & Frigaard, I. 2017 Dispersion of solids in fracturing flows of yield stress fluids. J. Fluid Mech. 830, 93137.CrossRefGoogle Scholar
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11 (1), 179185.CrossRefGoogle ScholarPubMed
Konijn, B., Sanderink, O. & Kruyt, N. 2014 Experimental study of the viscosity of suspensions: Effect of solid fraction, particle size and suspending liquid. Powder Technol. 266, 6169.CrossRefGoogle Scholar
Krieger, I. M. & Dougherty, T. J. 1959 A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3 (1), 137152.CrossRefGoogle Scholar
Kulkarni, P. M. & Morris, J. F. 2008 Suspension properties at finite Reynolds number from simulated shear flow. Phys. Fluids 20, 040602.CrossRefGoogle Scholar
Lambert, R., Picano, F., Breugem, W. P. & Brandt, L. 2013 Active suspensions in thin films: nutrient uptake and swimmer motion. J. Fluid Mech. 733, 528557.CrossRefGoogle Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids, vol. 150. Oxford University Press.Google Scholar
Lashgari, I., Picano, F., Breugem, W.-P. & Brandt, L. 2014 Laminar, turbulent and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Phys. Rev. Lett. 113, 254502.CrossRefGoogle ScholarPubMed
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L. 2016 Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 1224.CrossRefGoogle Scholar
Liard, M., Martys, N. S., George, W. L., Lootens, D. & Hebraud, P. 2014 Scaling laws for the flow of generalized Newtonian suspensions. J. Rheol. 58, 19932015.CrossRefGoogle Scholar
Linares-Guerrero, E., Hunt, M. L. & Zenit, R. 2017 Effects of inertia and turbulence on rheological measurements of neutrally buoyant suspensions. J. Fluid Mech. 811, 525543.CrossRefGoogle Scholar
Madraki, Y., Hormozi, S., Ovarlez, G., Guazzelli, E. & Pouliquen, O. 2017 Enhancing shear thickening. Phys. Rev. Fluids 2 (3), 033301.CrossRefGoogle Scholar
Mahaut, F., Chateau, X., Coussot, P. & Ovarlez, G. 2008 Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 52 (1), 287313.CrossRefGoogle Scholar
Maron, S. H. & Pierce, P. E. 1956 Application of ree-eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 11, 8095.CrossRefGoogle Scholar
Mendoza, C. I. & Santamaria-Holek, I. 2009 The rheology of hard sphere suspensions at arbitrary volume fractions: an improved differential viscosity model. J. Chem. Phys. 130, 044904.CrossRefGoogle ScholarPubMed
Morrison, F. 2001 Understanding Rheology, 1st edn. Oxford University Press.Google Scholar
Nouar, C., Bottaro, A. & Brancher, J. P. 2007 Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177194.CrossRefGoogle Scholar
Ovarlez, G., Bertrand, F., Coussot, P. & Chateau, X. 2012 Shear-induced sedimentation in yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 1928.CrossRefGoogle Scholar
Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J. Rheol. 50 (3), 259292.CrossRefGoogle Scholar
Ovarlez, G., Mahaut, F., Deboeufg, S., Lenoir, N., Hormozi, S. & Chateau, X. 2015 Flows of suspensions of particles in yield stress fluids. J. Rheol. 59, 14491486.CrossRefGoogle Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Picano, F., Breugem, W.-P., Mitra, D. & Brandt, L. 2013 Shear thickening in non-Brownian suspensions: an excluded volume effect. Phys. Rev. Lett. 111 (9), 098302.CrossRefGoogle Scholar
Poslinski, A. J., Ryan, M. E., Gupta, R. K., Seshadri, S. G. & Frechette, F. J. 1988 Rheological behavior of filled polymeric systems i. Yield stress and shear-thinning effects. J. Rheol. 32 (7), 703735.CrossRefGoogle Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. Lond. A 367 (1909), 50915107.CrossRefGoogle ScholarPubMed
Prosperetti, A. 2015 Life and death by boundary conditions. J. Fluid Mech. 768, 14.CrossRefGoogle Scholar
Quemada, D. 1977 Rheology of concentrated disperse systems and minimum energy dissipation principle. i. viscosity-concentration relationship. Rheol. Acta 16, 8294.CrossRefGoogle Scholar
Shewan, H. & Stokes, J. 2015 Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. J. Non-Newtonian Fluid Mech. 222, 7281.CrossRefGoogle Scholar
Sierou, A. & Brady, J. F. 2002 Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46 (5), 10311056.CrossRefGoogle Scholar
Singh, A. & Nott, P. 2003 Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech. 490, 293320.CrossRefGoogle Scholar
Stickel, J. & Powell, R. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129149.CrossRefGoogle Scholar
Trulsson, M., Andreotti, B. & Claudin, P. 2012 Transition from the viscous to inertial regime in dense suspensions. Phys. Rev. Lett. 109 (11), 118305.CrossRefGoogle ScholarPubMed
Vu, T., Ovarlez, G. & Chateau, X. 2010 Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids. J. Rheol. 54 (4), 815833.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2010 Dynamics of concentrated suspensions of non-colloidal particles in Couette flow. J . Fluid Mech. 649, 205231.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2013 Dynamics and rheology of concentrated, finite-Reynolds-number suspensions in a homogeneous shear flow. Phys. Fluids 25 (5), 053303.CrossRefGoogle Scholar
Yurkovetsky, Y. & Morris, J. F. 2008 Particle pressure in sheared Brownian suspensions. J. Rheol. 52 (1), 141164.CrossRefGoogle Scholar
Zarraga, I., Hill, D. & Leighton, D. 2000 The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Interface-resolved simulations of particle suspensions in Newtonian, shear thinning and shear thickening carrier fluids
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *