Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T08:42:48.006Z Has data issue: false hasContentIssue false

Instability of vertically stratified horizontal plane Poiseuille flow

Published online by Cambridge University Press:  20 November 2020

P. Le Gal*
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 49 rue F. Joliot Curie, 13384Marseille, CEDEX 13, France
U. Harlander
Affiliation:
Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Cottbus-Senftenberg, Germany
I. D. Borcia
Affiliation:
Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Cottbus-Senftenberg, Germany Institute of Physics, Brandenburg University of Technology, Erich-Weinert-Strasse 1, 03046Cottbus, Germany
S. Le Dizès
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 49 rue F. Joliot Curie, 13384Marseille, CEDEX 13, France
J. Chen
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 49 rue F. Joliot Curie, 13384Marseille, CEDEX 13, France
B. Favier
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, 49 rue F. Joliot Curie, 13384Marseille, CEDEX 13, France
*
Email address for correspondence: legal@irphe.univ-mrs.fr

Abstract

We present here the first study on the stability of plane Poiseuille flow when the fluid is stratified in density perpendicularly to the plane of horizontal shear. Using laboratory experiments, linear stability analyses and direct numerical simulations, we describe the appearance of an instability that results from a resonance of internal gravity waves and Tollmien–Schlichting waves carried by the flow. This instability takes the form of long meanders confined in thin horizontal layers stacked along the vertical axis.

Type
JFM Rapids
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baines, P. G., Majumdar, S. J. & Mitsudera, H. 1996 The mechanics of the Tollmien–Schlichting wave. J. Fluid Mech. 312, 107124.CrossRefGoogle Scholar
Bakas, N. A. & Farrell, B. F. 2009 a Gravity waves in a horizontal shear flow. Part I: growth mechanisms in the absence of potential vorticity perturbations. J. Phys. Oceanogr. 39, 481496.Google Scholar
Bakas, N. A. & Farrell, B. F. 2009 b Gravity waves in a horizontal shear flow. Part II: interaction between gravity waves and potential vorticity perturbations. J. Phys. Oceanogr. 39, 497511.CrossRefGoogle Scholar
Basovich, A. Y. & Tsimring, L. S. 1984 Internal waves in a horizontally inhomogeneous flow. J. Fluid Mech. 142, 223249.CrossRefGoogle Scholar
Billant, P. & Chomaz, J. M. 2001 Self-similarity of strongly stratified inviscid flows. Phys. Fluids 13 (6), 16451651.CrossRefGoogle Scholar
Cairns, R. A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92 (1), 114.Google Scholar
Candelier, J., Le Dizès, S. & Millet, C. 2011 Shear instability in a stratified fluid when shear and stratification are not aligned. J. Fluid Mech. 685, 191201.CrossRefGoogle Scholar
Candelier, J., Le Dizès, S. & Millet, C. 2012 Inviscid instability of a stably stratified compressible boundary layer on an inclined surface. J. Fluid Mech. 694, 524539.CrossRefGoogle Scholar
Carpenter, J. R., Tedford, E. W., Heifetz, E. & Lawrence, G. A. 2011 Instability in stratified shear flow: review of a physical interpretation based on interacting waves. Appl. Mech. Rev. 64, 060801.CrossRefGoogle Scholar
Caulfield, C. P. 1994 Multiple linear instability of layered stratified shear flow. J. Fluid Mech. 258, 255285.Google Scholar
Caulfield, C. P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53, 113145.CrossRefGoogle Scholar
Chen, J. 2016 Stabilité d'un écoulement stratifié sur une paroi et dans un canal. PhD thesis, Aix Marseille Université.Google Scholar
Chen, J., Bai, Y. & Le Dizès, S. 2016 Instability of a boundary layer flow on a vertical wall in a stably stratified fluid. J. Fluid Mech. 795, 262277.Google Scholar
Deloncle, A., Chomaz, J.-M. & Billant, P. 2007 Three-dimensional stability of a horizontally sheared flow in a stably stratified fluid. J. Fluid Mech. 570, 297305.CrossRefGoogle Scholar
Eaves, T. S. & Caulfield, C. P. 2017 Multiple instability of layered stratified plane Couette flow. J. Fluid Mech. 813, 250278.Google Scholar
Facchini, G., Favier, B., Le Gal, P., Wang, M. & Le Bars, M. 2018 The linear instability of the stratified plane Couette flow. J. Fluid Mech. 853, 205234.CrossRefGoogle Scholar
Falkovich, G. & Vladimirova, N. 2018 Turbulence appearance and nonappearance in thin fluid layers. Phys. Rev. Lett. 121, 164501.CrossRefGoogle ScholarPubMed
Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84101.CrossRefGoogle Scholar
Gage, K. S. & Reid, W. H. 1968 The stability of thermally stratified plane Poiseuille flow. J. Fluid Mech. 33 (1), 2132.CrossRefGoogle Scholar
Le Bars, M. & Le Gal, P. 2007 Experimental analysis of the stratorotational instability in a cylindrical Couette flow. Phys. Rev. Lett. 99, 064502.CrossRefGoogle Scholar
Le Dizès, S. & Billant, P. 2009 Radiative instability in stratified vortices. Phys. Fluids 21, 096602.CrossRefGoogle Scholar
Le Dizès, S. & Riedinger, X. 2010 The strato-rotational instability of Taylor–Couette and Keplerian flows. J. Fluid Mech. 660, 147161.CrossRefGoogle Scholar
Lindzen, R. S. & Barker, J. W. 1985 Instability and wave over-reflection in stably stratified shear flow. J. Fluid Mech. 151, 189217.CrossRefGoogle Scholar
Lucas, D., Caulfield, C. P. & Kerswell, R. R. 2017 Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities. J. Fluid Mech. 832, 409437.CrossRefGoogle Scholar
Lucas, D., Caulfield, C. P. & Kerswell, R. R. 2019 Layer formation and relaminarisation in plane Couette flow with spanwise stratification. J. Fluid Mech. 868, 97118.CrossRefGoogle Scholar
Molemaker, M. J., McWilliams, J. C. & Yavneh, I. 2001 Instability and equilibration of centrifugally stable stratified Taylor–Couette flow. Phys. Rev. Lett. 86, 52705273.CrossRefGoogle ScholarPubMed
Orszag, S. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.CrossRefGoogle Scholar
Oster, G. 1965 Density gradients. Sci. Am. 213 (2), 7079.CrossRefGoogle Scholar
Park, J. & Billant, P. 2013 The stably stratified Taylor–Couette flow is always unstable except for solid-body rotation. J. Fluid Mech. 725, 262280.CrossRefGoogle Scholar
Riedinger, X., Le Dizès, S. & Meunier, P. 2010 Viscous stability properties of a Lamb–Oseen vortex in a stratified fluid. J. Fluid Mech. 645, 255278.CrossRefGoogle Scholar
Riedinger, X., Le Dizès, S. & Meunier, P. 2011 Radiative instability of the flow around a rotating cylinder in a stratified fluid. J. Fluid Mech. 672, 130146.Google Scholar
Rüdiger, G., Seelig, T., Schultz, M., Gellert, M., Egbers, Ch. & Harlander, U. 2017 The stratorotational instability of Taylor–Couette flows with moderate Reynolds numbers. Geophys. Astrophys. Fluid Dyn. 111, 429447.CrossRefGoogle Scholar
Satomura, T. 1981 An investigation of shear instability in a shallow water. J. Met. Soc. Japan 59 (1), 148167.CrossRefGoogle Scholar
Taylor, G. I. 1931 Effect of variation in density on the stability of superposed streams of fluid. Proc. R. Soc. Lond. A 132, 499523.Google Scholar
Theofilis, V., Duck, P. W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E. 2014 PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in matlab. J. Open Res. Softw. 2 (1), p.e30.CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2007 Unbalanced instabilities of rapidly rotating stratified shear flows. J. Fluid Mech. 584, 373396.CrossRefGoogle Scholar