Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-scc96 Total loading time: 0.229 Render date: 2021-06-20T20:21:54.756Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

The hydrodynamics of water-walking arthropods

Published online by Cambridge University Press:  11 February 2010

DAVID L. HU
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
JOHN W. M. BUSH
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Corresponding
E-mail address:

Abstract

We present the results of a combined experimental and theoretical investigation of the dynamics of water-walking insects and spiders. Using high-speed videography, we describe their numerous gaits, some analogous to those of their terrestrial counterparts, others specialized for life at the interface. The critical role of the rough surface of these water walkers in both floatation and propulsion is demonstrated. Their waxy, hairy surface ensures that their legs remain in a water-repellent state, that the bulk of their leg is not wetted, but rather contact with the water arises exclusively through individual hairs. Maintaining this water-repellent state requires that the speed of their driving legs does not exceed a critical wetting speed. Flow visualization reveals that the wakes of most water walkers are characterized by a series of coherent subsurface vortices shed by the driving stroke. A theoretical framework is developed in order to describe the propulsion in terms of the transfer of forces and momentum between the creature and its environment. The application of the conservation of momentum to biolocomotion at the interface confirms that the propulsion of water walkers may be rationalized in terms of the subsurface flows generated by their driving stroke. The two principal modes of propulsion available to small water walkers are elucidated. At driving leg speeds in excess of the capillary wave speed, macroscopic curvature forces are generated by deforming the meniscus, and the surface behaves effectively as a trampoline. For slower speeds, the driving legs need not substantially deform the surface but may instead simply brush it: the resulting contact or viscous forces acting on the leg hairs crossing the interface serve to propel the creature forward.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Present address: Departments of Mechanical Engineering and Biology, Georgia Institute of Technology, Atlanta, GA 30318, USA

References

Aldrovandi, U. 1618 Historiam naturalem de Animalibus Insectis Libri Septem. Typis Pauli Jacobi.CrossRefGoogle Scholar
Alexander, R. M. 2003 Principles of Animal Locomotion. Princeton University Press.CrossRefGoogle Scholar
Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown, H. B. Jr., McMordie, D., Saranli, U., Full, R. & Koditschek, D. E. 2001 RHex: a biologically inspired hexapod runner. J. Auton. Robots 11, 207213.CrossRefGoogle Scholar
Andersen, N. M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (insects, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337396.Google Scholar
Andersen, N. M. 1977 Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs in relation to life on the water surface. Vidensk. Meddr. Dansk. Naturh. Foren. 140, 737.Google Scholar
Bartolo, D., Bouamrirene, F., Verneuil, E., Beguin, A., Silberzan, P. & Moulinet, S. 2006 Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces. Europhys. Lett. 74, 299305.CrossRefGoogle Scholar
Baudoin, R. 1955 La physico-chimie des surfaces dans la vie des Arthropodes aeriens des miroirs d'eau, des rivages marins et lacustres et de la zone intercotidale. Bull. Biol. Fr. Belg. 89, 16164.Google Scholar
Bowdan, E. 1978 Walking and rowing in the water strider, Gerris remigis. J. Compar. Physiol. 123, 4349.CrossRefGoogle Scholar
Brocher, F. 1910 Les phénomènes capillaires, leur importance dans la biologie aquatique. Ann. Biol. Lacustre 4, 89139.Google Scholar
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid. Mech. 573, 211236.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2004 Walking on water. In Multimedia Fluid Mechanics CD (ed. Homsy, G. M.). Cambridge University Press.Google Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Bush, J. W. M., Hu, D. L. & Prakash, M. 2008 The integument of water-walking arthropods: form and function. Adv. Insect Physiol. 34, 117192.CrossRefGoogle Scholar
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.CrossRefGoogle Scholar
Chepelianskii, A. D., Chevy, F. & Raphäel, E. 2008 On capillary–gravity waves generated by a slowly moving object. Phys. Rev. Lett. p. 074504.Google Scholar
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.CrossRefGoogle Scholar
Dabiri, J. O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol. 208, 35193532.CrossRefGoogle ScholarPubMed
Darnhofer-Demar, B. 1969 Zur fortbewegung des wasserläufers Gerris lacustris L. auf des wasseroberfläche. Zool. Anz. Suppl. 32, 430439.Google Scholar
Denny, M. W. 1993 Air and Water: The Biology and Physics of Life's Media. Princeton University Press.Google Scholar
Denny, M. W. 2004 Paradox lost: answers and questions about walking on water. J. Exp. Biol. 207, 16011606.CrossRefGoogle ScholarPubMed
Dias, F. & Kharif, C. 1999 Numerical study of capillary-gravity solitary waves. Annu. Rev. Fluid Mech. 31, 301346.CrossRefGoogle Scholar
Dias, F., Menasce, D. & Vanden-Broeck, J. M. 1996 Numerical study of capillary-gravity solitary waves. Eur. J. Mech. B 15, 1736.Google Scholar
Dickinson, M. H. 2003 Animal locomotion: how to walk on water. Nature 424, 621622.CrossRefGoogle ScholarPubMed
Dufour, L. 1833 Recherches Anatomiques et Physiologiques sur les Hémiptères, Accompagnées de Considèrations Relatives à l'Histoire Naturelle et à la Classification de ces Insectes, pp. 68–74. Impr. de Bachelier, extrait des Mémoires des savants étrangers, tome IV.Google Scholar
Dussan, E. B. 1979 On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Mech 11, 371400.CrossRefGoogle Scholar
Dussan, E. B. & Chow, R. T. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 129.CrossRefGoogle Scholar
Floyd, S., Keegan, T., Palmisano, J. & Sitti, M. 2006 A novel water running robot inspired by basilisk lizards. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5430–5436.Google Scholar
Flynn, M. R. & Bush, J. W. M. 2008 Underwater breathing: the mechanics of plastron respiration. J. Fluid Mech. 608, 275296.CrossRefGoogle Scholar
Gao, X. & Jiang, L. 2004 Water-repellent legs of water striders. Nature 432, 36.CrossRefGoogle ScholarPubMed
de Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 a A hydrodynamic model of locomotion in the Basilisk lizard. Nature 380, 340342.CrossRefGoogle Scholar
Glasheen, J. W. & McMahon, T. A. 1996 b Size dependence of water-running ability in Basilisk lizards Basiliscus basiliscus. J. Exp. Biol. 199, 26112618.Google ScholarPubMed
Hinton, H. E. 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.CrossRefGoogle Scholar
Holdgate, M. W. 1955 The wetting of insect cuticle by water. J. Exp. Biol. pp. 591–617.Google Scholar
Hsieh, T. S. 2003 Three-dimensional hindlimb kinematics of water running in the plumed basilisk lizard (Basiliscus plumifrons). J. Exp. Biol. 206, 43634377.CrossRefGoogle ScholarPubMed
Hsieh, T. S. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl Acad. Sci. 101, 1678416788.CrossRefGoogle ScholarPubMed
Hu, D. L. & Bush, J. W. M. 2005 Meniscus-climbing insects. Nature 437, 733736.CrossRefGoogle ScholarPubMed
Hu, D. L., Chan, B. & Bush, J. W. M. 2003 The hydrodynamics of water strider locomotion. Nature 424, 663666.CrossRefGoogle ScholarPubMed
Hu, D. L., Prakash, M., Chan, B. & Bush, J. W. M. 2007 Water-walking devices. Exp. Fluids 43, 769778.CrossRefGoogle Scholar
Janssens, F. 2005 Checklist of the Collembola of the world: note on the morphology and origin of the foot of the Collembola. http://www.Collembola.org/publicat/unguis.htm.Google Scholar
Keller, J. B. 1998 Surface tension force on a partly submerged body. Phys. Fluids 10, 30093010.CrossRefGoogle Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Linsenmair, K. E. & Jander, R. 1976 Das ‘entspannungsschwimmen’ von Velia and Stenus. Naturwissenschaften 50, 231.CrossRefGoogle Scholar
Mansfield, E. H., Sepangi, H. R. & Eastwood, E. A. 1997 Equilibrium and mutual attraction or repulsion of objects supported by surface tension. Philos. Trans. R. Soc. Lond. A 355, 869919.CrossRefGoogle Scholar
Matsuda, K., Watanabe, S. & Eiju, T. 1985 Real-time measurement of large liquid surface deformation using a holographic shearing interferometer. Appl. Opt. 24 (24), 44434447.CrossRefGoogle ScholarPubMed
Milewski, P. A. & Vanden-Broeck, J. M. 1999 Time-dependent gravity-capillary flows past an obstacle. Wave Mot. 29, 6379.CrossRefGoogle Scholar
Miyamoto, S. 1955 On a special mode of locomotion utilizing surface tension at the water-edge in some semiaquatic insects. Kontyû 23, 4552.Google Scholar
Noble-Nesbitt, J. 1963 Transpiration in Podura aquatica L. (Collembola, Isotomidae) and the wetting properties of its cuticle. J. Exp. Biol. 40, 681700.Google Scholar
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier-Villars.Google Scholar
Prakash, M. & Bush, J. W. M. Interfacial propulsion by directional adhesion. Nat. Materials (submitted).Google Scholar
Quéré, D. 2008 Wetting and Roughness. Annu. Rev. Mater. Res. 38, 7199.CrossRefGoogle Scholar
Ray, J. 1710 Historia insectorum. Impensis A. & J. Churchill.Google Scholar
Reyssat, M., Pépin, A., Marty, F., Chen, Y. & Quéré, D. 2006 Bouncing transitions in microtextured materials. Europhys. Lett. 74, 306312.CrossRefGoogle Scholar
Schildknecht, H. 1976 Chemical ecology - a chapter of modern natural products chemistry. Angew. Chem. Intl Ed. Engl. 15, 214222.CrossRefGoogle Scholar
Scriven, L. E. & Sternling, C. V. 1970 The Marangoni effects. Nature 187, 186188.CrossRefGoogle Scholar
Song, Y. S., Suhr, S. H. & Sitti, M. 2006 Modeling of the supporting legs for designing a biomimetic water strider robot. In Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2303–2310.Google Scholar
Spedding, G. R., Rosén, M. & Hedenstrom, A. 2003 A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 23132344.CrossRefGoogle Scholar
Spilhaus, A. 1948 Raindrop size, shape and falling speed. J. Atmos. Sci. 5 (3), 108110.Google Scholar
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 a Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.CrossRefGoogle Scholar
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 b Taxonomic variation among spiders in the ability to repel water: surface adhesion and hair density. J. Arachnol. 32, 1121.Google Scholar
Suhr, S. H., Song, Y. S., Lee, S. J. & Sitti, M. 2005 Biologically inspired miniature water strider robot. Proc. Robot. Sci. Sys. pp. 42–48.Google Scholar
Sun, S. M. & Keller, J. B. 2001 Capillary–gravity wave drag. Phys. Fluids 13 (8), 21462151.CrossRefGoogle Scholar
Suter, R. B. 2003 Trichobothrial mediation of an aquatic escape response: directional jumps by the fishing spider. J. Insect Sci. 3, 17.CrossRefGoogle ScholarPubMed
Suter, R. B. & Gruenwald, J. 2000 Predator avoidance on the water surface? Kinematics and efficacy of vertical jumping by Dolomedes (Araneae, Pisauridae). J. Arachnol. 28 (2), 201210.CrossRefGoogle Scholar
Suter, R. B., Rosenberg, R. B., Loeb, S., Wildman, H. & Long, J. 1997 Locomotion on the water surface: propulsive mechanisms of the fisher spider Dolomedes triton. J. Exp. Biol. 200, 25232538.Google Scholar
Suter, R. B., Stratton, G. & Miller, P. 2003 Water surface locomotion by spiders: distinct gaits in diverse families. J. Arachnol. 31 (3), 428432.CrossRefGoogle Scholar
Suter, R. B. & Wildman, H. 1999 Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change. J. Exp. Biol. 202, 27712785.Google ScholarPubMed
Taneda, S. 1991 Visual observations of the flow around a half-submerged oscillating sphere. J. Fluid. Mech. 227, 193209.CrossRefGoogle Scholar
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.CrossRefGoogle Scholar
Thorpe, W. H. & Crisp, D. J. 1947 Studies on plastron respiration. Part I. The biology of Apelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron rentention. J. Exp. Biol. 24, 227269.Google Scholar
Vanden-Broeck, J. & Dias, F. 1992 Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. J. Fluid Mech. 240, 549557.CrossRefGoogle Scholar
Vogel, S. 1994 Life in Moving Fluids. Princeton University Press.Google Scholar
Vogel, S. 2006 Living in a physical world. Part VIII. Gravity and life in water. J. Biosci. 30 (3), 309322.CrossRefGoogle Scholar
Voropayev, S. I. & Afanasyev, Y. D. 1994 Vortex Structures in a Stratified Fluid, pp. 35–37. Chapman & Hall.Google Scholar
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Indus. Engng Chem. 28, 988994.CrossRefGoogle Scholar
Wilga, C. & Lauder, G. 2002 Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering. J. Exp. Biol. 205, 23652374.Google ScholarPubMed
Yu, Y., Guo, M., Li, X. & Zheng, Q. S. 2007 Meniscus-climbing behaviour and its minimum free-energy mechanism. Langmuir 23, 1054610550.CrossRefGoogle ScholarPubMed
86
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The hydrodynamics of water-walking arthropods
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The hydrodynamics of water-walking arthropods
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The hydrodynamics of water-walking arthropods
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *