Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-54nbv Total loading time: 0.183 Render date: 2021-07-26T06:00:32.396Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Görtler vortices in compressible mixing layers

Published online by Cambridge University Press:  07 February 2001

J. M. SARKIES
Affiliation:
School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
S. R. OTTO
Affiliation:
School of Mathematics and Statistics, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract

In experiments, Plesniak, Mehta & Johnson (1994) have noted that curved two-stream mixing layers are susceptible to centrifugal instabilities under the condition that the slower of the streams curves towards the faster one; this condition is analogous to the concave curvature condition for the stability of the flow over a plate. The modes which arise manifest themselves as vortices aligned with the dominant flow direction. Previous numerical and analytical work has elucidated the structure of these vortices within incompressible mixing layers; Otto, Jackson & Hu (1996). In this paper we go on to investigate the rôles of compressibility and heating in determining the streamwise fate of Görtler vortices within these situations.

The development of the disturbances is monitored downstream and curves of neutral stability are plotted. The effect of changing the Mach number and free-stream temperatures is studied in detail. It is found that for certain parameter régimes modes can occur within convexly curved, or ‘stable’ mixing layers; these ‘thermal modes’ have no counterpart within incompressible mixing layers. By making use of a large Görtler number analysis we are able to verify our numerical results, and derive a very simple condition which yields information about the parameter ranges for which certain modes are likely to occur. As an aside this method can be used to show that no degree of wall cooling will allow sustained growth of Görtler vortices within boundary layers over convex plates.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.
3
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Görtler vortices in compressible mixing layers
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Görtler vortices in compressible mixing layers
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Görtler vortices in compressible mixing layers
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *