Hostname: page-component-cd4964975-8tfrx Total loading time: 0 Render date: 2023-03-30T16:59:27.562Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Geometric decomposition of the conformation tensor in viscoelastic turbulence

Published online by Cambridge University Press:  12 March 2018

Ismail Hameduddin*
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
Charles Meneveau
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
Tamer A. Zaki
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
Dennice F. Gayme
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
Email address for correspondence:


This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

JFM Papers
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Agarwal, A., Brandt, L. & Zaki, T. A. 2014 Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. J. Fluid Mech. 760, 278303.CrossRefGoogle Scholar
de Angelis, E., Casciola, C. & Piva, R. 2002 DNS of wall turbulence: dilute polymers and self-sustaining mechanisms. Comput. Fluids 31 (4), 495507.CrossRefGoogle Scholar
Arsigny, V., Fillard, P., Pennec, X. & Ayache, N. 2007 Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Applics. 29 (1), 328347.CrossRefGoogle Scholar
Balci, N., Thomases, B., Renardy, M. & Doering, C. R. 2011 Symmetric factorization of the conformation tensor in viscoelastic fluid models. J. Non-Newtonian Fluid Mech. 166 (11), 546553.CrossRefGoogle Scholar
Batchelor, G. K. 1952 The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. Lond. A 213 (1114), 349366.CrossRefGoogle Scholar
Batchelor, P. G., Moakher, M., Atkinson, D., Calamante, F. & Connelly, A. 2005 A rigorous framework for diffusion tensor calculus. Magn. Reson. Med. 53 (1), 221225.CrossRefGoogle ScholarPubMed
Beris, A. N. & Edwards, B. J. 1994 Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford University Press.Google Scholar
Bhatia, R. 2015 Positive Definite Matrices. Princeton University Press.Google Scholar
Biferale, L., Meneveau, C. & Verzicco, R. 2014 Deformation statistics of sub-Kolmogorov-scale ellipsoidal neutrally buoyant drops in isotropic turbulence. J. Fluid Mech. 754, 184207.CrossRefGoogle Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. Wiley.Google Scholar
Casey, J. 2015 A convenient form of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22 (3), 110.Google Scholar
Cioranescu, D., Girault, V. & Rajagopal, K. 2016 Mechanics and Mathematics of Fluids of the Differential Type, Advances in Mechanics and Mathematics, vol. 35. Springer International Publishing.CrossRefGoogle Scholar
Dallas, V., Vassilicos, J. C. & Hewitt, G. F. 2010 Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82 (6), 066303.Google ScholarPubMed
Dean, R. B. 1978 Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J. Fluids Engng 100 (2), 215223.CrossRefGoogle Scholar
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. Former. Appl. Sci. Res. 74 (4), 311329.CrossRefGoogle Scholar
Fattal, R. & Kupferman, R. 2004 Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2), 281285.CrossRefGoogle Scholar
Fletcher, P. T. & Joshi, S. 2007 Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87 (2), 250262.CrossRefGoogle Scholar
Hoger, A. & Carlson, D. 1984 Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Q. Appl. Maths 42 (1), 113117.CrossRefGoogle Scholar
Housiadas, K. D. & Beris, A. 2003 Polymer-induced drag reduction: effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15 (8), 23692384.CrossRefGoogle Scholar
Hulsen, M. A., Fattal, R. & Kupferman, R. 2005 Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (1), 2739.CrossRefGoogle Scholar
Iaccarino, G., Shaqfeh, E. S. G. & Dubief, Y. 2010 Reynolds-averaged modeling of polymer drag reduction in turbulent flows. J. Non-Newtonian Fluid Mech. 165 (7), 376384.CrossRefGoogle Scholar
Johnson, P. L., Hamilton, S. S., Burns, R. & Meneveau, C. 2017 Analysis of geometrical and statistical features of Lagrangian stretching in turbulent channel flow using a database task-parallel particle tracking algorithm. Phys. Rev. Fluids 2 (1), 014605.CrossRefGoogle Scholar
Kim, K., Li, C., Sureshkumar, R., Balachandar, S. & Adrian, R. J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.CrossRefGoogle Scholar
Kim, K. & Sureshkumar, R. 2013 Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E 87 (6), 063002.Google ScholarPubMed
Klamkin, M. S. 1971 Elementary approximations to the area of N-dimensional ellipsoids. Am. Math. Mon. 78 (3), 280283.CrossRefGoogle Scholar
Knechtges, P. 2015 The fully-implicit log-conformation formulation and its application to three-dimensional flows. J. Non-Newtonian Fluid Mech. 223, 209220.CrossRefGoogle Scholar
Knechtges, P., Behr, M. & Elgeti, S. 2014 Fully-implicit log-conformation formulation of constitutive laws. J. Non-Newtonian Fluid Mech. 214, 7887.CrossRefGoogle Scholar
Lang, S. 2001 Fundamentals of Differential Geometry, Graduate Texts in Mathematics, vol. 191. Springer.Google Scholar
Lee, S. J. & Zaki, T. A. 2017 Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech. 820, 232262.CrossRefGoogle Scholar
Li, C. F., Gupta, V. K., Sureshkumar, R. & Khomami, B. 2006 Turbulent channel flow of dilute polymeric solutions: drag reduction scaling and an eddy viscosity model. J. Non-Newtonian Fluid Mech. 139 (3), 177189.CrossRefGoogle Scholar
Lubarda, V. 2004 Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57 (2), 95108.CrossRefGoogle Scholar
Lumley, J. L. 1970 Stochastic Tools in Turbulence. Academic Press.Google Scholar
Maffettone, P. L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78 (2), 227241.CrossRefGoogle Scholar
Masoudian, M., da Silva, C. B. & Pinho, F. T. 2016 Grid and subgrid-scale interactions in viscoelastic turbulent flow and implications for modelling. J. Turbul. 17 (6), 543571.CrossRefGoogle Scholar
Masoudian, M., Kim, K., Pinho, F. T. & Sureshkumar, R. 2013 A viscoelastic k–𝜀–v 2f turbulent flow model valid up to the maximum drag reduction limit. J. Non-Newtonian Fluid Mech. 202, 99111.CrossRefGoogle Scholar
McKechan, D. J. A., Robinson, C. & Sathyaprakash, B. 2010 A tapering window for time-domain templates and simulated signals in the detection of gravitational waves from coalescing compact binaries. Class. Quant. Grav. 27 (8), 084020.CrossRefGoogle Scholar
Meneveau, C. & Marusic, I. 2013 Generalized logarithmic law for high-order moments in turbulent boundary layers. J. Fluid Mech. 719, R1.CrossRefGoogle Scholar
Min, T., Choi, H. & Yoo, J. Y. 2003a Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91100.CrossRefGoogle Scholar
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003b Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.CrossRefGoogle Scholar
Moakher, M. & Batchelor, P. G. 2006 Symmetric positive-definite matrices: from geometry to applications and visualization. Vis. Process. Tensor Fields 285298.CrossRefGoogle Scholar
Mori, T. 1988 Comments on ‘A matrix inequality associated with bounds on solutions of algebraic Riccati and Lyapunov equation’ by J. M. Saniuk and I. B. Rhodes. IEEE Trans. Autom. Control 33 (11), 1088.CrossRefGoogle Scholar
Page, J. & Zaki, T. A. 2014 Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742, 520551.CrossRefGoogle Scholar
Page, J. & Zaki, T. A. 2015 The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shearflow. J. Fluid Mech. 777, 327363.CrossRefGoogle Scholar
Pennec, X., Fillard, P. & Ayache, N. 2006 A Riemannian framework for tensor computing. Intl J. Comput. Vis. 66 (1), 4166.CrossRefGoogle Scholar
Rajagopal, K. & Srinivasa, A. 2000 A thermodynamic frame work for rate type fluid models. J. Non-Newtonian Fluid Mech. 88 (3), 207227.CrossRefGoogle Scholar
Resende, P. R., Kim, K., Younis, B. A., Sureshkumar, R. & Pinho, F. T. 2011 A FENE-P k–𝜀 turbulence model for low and intermediate regimes of polymer-induced drag reduction. J. Non-Newtonian Fluid Mech. 166 (12), 639660.CrossRefGoogle Scholar
Sadik, S. & Yavari, A. 2017 On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids 22 (4), 771772.CrossRefGoogle Scholar
Sagaut, P. 2006 Large Eddy Simulation for Incompressible Flows: An Introduction. Springer.Google Scholar
Sureshkumar, R., Beris, A. N. & Handler, R. 1997 Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9 (3), 743755.CrossRefGoogle Scholar
Ting, T. C. T. 1985 Determination of C 1/2 , C -1/2 and more general isotropic tensor functions of C . J. Elast. 15 (3), 319323.CrossRefGoogle Scholar
Toms, B. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of Ist International Congress on Rheology, pp. 135141. North-Holland.Google Scholar
Truesdell, C. & Noll, W. 2004 The Non-Linear Field Theories of Mechanics. Springer.CrossRefGoogle Scholar
Vaithianathan, T. & Collins, L. R. 2003 Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187 (1), 121.CrossRefGoogle Scholar
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1), 322.CrossRefGoogle Scholar
Wang, S., Graham, M. D., Hahn, F. J. & Xi, L. 2014 Time-series and extended Karhunen–Loève analysis of turbulent drag reduction in polymer solutions. AIChE J. 60 (4), 14601475.CrossRefGoogle Scholar
Warholic, M. D., Massah, H. & Hanratty, T. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27 (5), 461472.CrossRefGoogle Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.CrossRefGoogle Scholar
Willmarth, W. W., Wei, T. & Lee, C. 1987 Laser anemometer measurements of Reynolds stress in a turbulent channel flow with drag reducing polymer additives. Phys. Fluids 30 (4), 933935.CrossRefGoogle Scholar
Xi, L. & Graham, M. D. 2010 Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421452.CrossRefGoogle Scholar
Yang, X. I. A., Marusic, I. & Meneveau, C. 2016 Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow. Phys. Rev. Fluids 1 (2), 024402.CrossRefGoogle Scholar