Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-14T07:46:01.684Z Has data issue: false hasContentIssue false

The effect of Brownian motion on the stability of sedimenting suspensions of polarizable rods in an electric field

Published online by Cambridge University Press:  10 April 2009

BRENDAN D. HOFFMAN
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA
ERIC S. G. SHAQFEH*
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025, USA Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030, USA
*
Email address for correspondence: esgs@stanford.edu

Abstract

We examine the collective dynamics of polarizable, Brownian, sedimenting rods of high aspect ratio. Previous work of Koch and Shaqfeh (J. Fluids Mech., vol. 209, 1989 pp. 521–542) has shown that in the absence of Brownian motion, sedimenting suspensions of rods are unstable to concentration fluctuations and form dense streamers via interparticle hydrodynamic interactions. Recently, Saintillan, Shaqfeh & Darve (Phys. Fluids, vol. 18 (121701), 2006b p. 1) demonstrated that electric fields can act to stabilize these non-Brownian suspensions of polarizable rods through induced-charge electrokinetic rotation, which forces particle alignment. In this paper, we employ a mean-field linear stability analysis as well as Brownian dynamics simulations to study the effect of thermal motion on the onset of instability. We find that in the absence of electric fields, Brownian motion consistently suppresses instability formation through randomization of particle orientation. However, when electric fields are applied, thermal motion can act to induce instability by counteracting the stabilizing effect of induced-charge orientation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banchio, A. J. & Brady, J. F. 2003 Accelerated Stokesian dynamics: Brownian motion. J. Chem. Phys. 118 (22), 1032310332.Google Scholar
Butler, J. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibers. J. Fluid Mech. 468, 205237.CrossRefGoogle Scholar
Butler, J. & Shaqfeh, E. S. G. 2005 Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamics interactions. J. Chem. Phys. 112 (014901), 111.Google Scholar
Chen, X. Q., Salto, T., Yamada, H. & Matsushige, K. 2001 Aligning single-wall carbon nanotubes with alternating-current electric field. Appl. Phys. Lett. 78 (23), 37143716.CrossRefGoogle Scholar
Chwang, A. T. & Wu, T. Y. 1974 Hydromechanics of low-reynolds-number flow, part 2. Singularity method for stokes flows. J. Fluid Mech. 67 (4), 787815.CrossRefGoogle Scholar
Claeys, I. L. & Brady, J. F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico Chem. Hydrodyn. 11, 261293.Google Scholar
Essman, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H. & Pedersen, L. G. 1995 A smooth particle mesh ewald method. J. Chem. Phys. 103, 8755.Google Scholar
Fair, M. C. & Anderson, J. L. 1989 Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid Interface Sci. 127 (2), 388400.Google Scholar
Fixman, M. 1986 Construction of Langevin forces in the simulation of hydrodynamic interaction. Macromolecules 19, 12041207.CrossRefGoogle Scholar
Han, S. P. & Yang, S. M. 1996 Orientation distribution and electrophoretic motions of rod-like particles in a capillary. J. Colloid Interface Sci. 177, 132142.CrossRefGoogle Scholar
Harlen, O. G., Sundararajkumar, R. R. & Koch, D. L. 1999 Numerical simulation of a sphere settling through a suspension of neutrally buoyant fibers. J. Fluid Mech. 388, 355388.CrossRefGoogle Scholar
Hasimoto, H. 1958 On the perioidic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317328.CrossRefGoogle Scholar
Herzhaft, B. & Guazzelli, E. 1999 Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibers. J. Fluid Mech. 384, 133158.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics, Principles and Selected Applications. Dover Publications.Google Scholar
Koch, D. L. & Shaqfeh, E. S. G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.Google Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluids. Oxford University Press.Google Scholar
Nicewater-Pena, S. R., Freeman, R. G., Reiss, B. D., He, L., Pena, D., Walton, I. D., Cromer, R., Keating, C. D. & Natan, M. J. 2001 Submicrometer metallic barcodes. Science 294, 137141.CrossRefGoogle Scholar
Rose, K. A., Meier, J. A., Dougherty, G. M. & Santiago, J. G. 2007 Rotational electrophoresis of striped metallic microrods. Phys. Rev. E 75 (011503), 115.Google Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2005 A smooth particle-mesh ewald algorithm for Stokes suspension simulations: the sedimentation of fibers. Phys. Fluids 17 (033301), 14.Google Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 a The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553.Google Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 b Stabilization of a suspension of sedimenting rods by induced-charge electrophoresis. Phys. Fluids 18 (121701), 14.Google Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 c The effect of stratification on the wave number selection in the instability of sedimenting spheroids. Phys. Fluids 18 (121503).CrossRefGoogle Scholar
Santillan, D., Darve, E. & Shaqfeh, E. S. G. 2006 d Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions. J. Fluid Mech. 563 (223).Google Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Ann. Rev. Fluid Mech. 9, 321337.CrossRefGoogle Scholar
Smith, P., Nordquist, C., Jackson, T., Mayer, T., Martin, B., Mbindyo, J. & Mallouk, T. 2000 Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77 (9), 13991401.CrossRefGoogle Scholar
Squires Todd, M. & Bazant, Martin Z. 2004 Induced-charge electro-osmosis. J. Fluid Mech. 509, 217252.CrossRefGoogle Scholar
Squires Todd, M. & Bazant, Martin Z. 2005 Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65101.Google Scholar