Hostname: page-component-59f8fd8595-tmn4r Total loading time: 0 Render date: 2023-03-21T21:55:50.335Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Dynamics of a surfactant-laden bubble bursting through an interface

Published online by Cambridge University Press:  03 February 2021

C.R. Constante-Amores
Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, UK
L. Kahouadji
Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, UK
A. Batchvarov
Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, UK
S. Shin
Department of Mechanical and System Design Engineering, Hongik University, Seoul04066, Republic of Korea
J. Chergui
Université Paris Saclay, Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), 91400Orsay, France
D. Juric
Université Paris Saclay, Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), 91400Orsay, France
O.K. Matar*
Department of Chemical Engineering, Imperial College London, LondonSW7 2AZ, UK
Email address for correspondence:


We study the effect of surfactant on the dynamics of a bubble bursting through an interface. We perform fully three-dimensional direct numerical simulations using a hybrid interface-tracking/level-set method accounting for surfactant-induced Marangoni stresses, sorption kinetics and diffusive effects. We select an initial bubble shape corresponding to a large Laplace number and a vanishingly small Bond number in order to neglect gravity, and isolate the effects of surfactant on the flow. Our results demonstrate that the presence of surfactant affects the dynamics of the system through Marangoni-induced flow, driving motion from high to low concentration regions, which is responsible for the onset of a recirculation zone close to the free surface. These Marangoni stresses rigidify the interface, delay the cavity collapse and influence the jet breakup process.

JFM Papers
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Asaki, T.J., Thiessen, D.B. & Marston, P.L. 1995 Effect of an insoluble surfactant on capillary oscillations of bubbles in water: observation of a maximum in the damping. Phys. Rev. Lett. 75 (14), 26862689.CrossRefGoogle ScholarPubMed
Berny, A., Deike, L., Séon, T. & Popinet, S. 2020 Role of all jet drops in mass transfer from bursting bubbles. Phys. Rev. Fluids 5, 033605.CrossRefGoogle Scholar
Blanchard, D.C. & Syzdek, L.D. 1972 Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77 (27), 50875099.CrossRefGoogle Scholar
Blanchard, D.C. & Woodcock, A.H. 1957 Bubble formation and modification in the sea and its meteorological significance. Tellus 9 (2), 145158.CrossRefGoogle Scholar
Blanco-Rodrìguez, F.J. & Gordillo, J.M. 2020 On the sea spray aerosol originated from bubble bursting jets. J. Fluid Mech. 886, R2.CrossRefGoogle Scholar
Boulton-Stone, J.M. & Blake, J.R. 1993 Gas bubbles bursting at a free surface. J. Fluid Mech. 254, 437466.CrossRefGoogle Scholar
Chorin, A.J. 1968 Numerical solution of the Navier–Stokes equations. Maths Comput. 22 (104), 745745.CrossRefGoogle Scholar
Constante-Amores, C.R., Kahouadji, L., Batchvarov, A., Shin, S., Chergui, J., Juric, D. & Matar, O.K. 2020 Dynamics of retracting surfactant-laden ligaments at intermediate Ohnesorge number. Phys. Rev. Fluids 5, 084007.CrossRefGoogle Scholar
Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2002 Pinchoff and satellite formation in surfactant covered viscous threads. Phys. Fluids 14 (4), 13641376.CrossRefGoogle Scholar
Craster, R.V., Matar, O.K. & Papageorgiou, D.T. 2009 Breakup of surfactant-laden jets above the critical micelle concentration. J. Fluid Mech. 629, 195219.CrossRefGoogle Scholar
Deike, L., Ghabache, E., Liger-Belair, G., Das, A.K., Zaleski, S., Popinet, S. & Séon, T. 2018 Dynamics of jets produced by bursting bubbles. Phys. Rev. Fluids 3, 013603.CrossRefGoogle Scholar
Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. 2002 Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000.CrossRefGoogle Scholar
Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface. Phys. Rev. Lett. 71, 34583460.CrossRefGoogle ScholarPubMed
Gañán-Calvo, A.M. 2017 Revision of bubble bursting: universal scaling laws of top jet drop size and speed. Phys. Rev. Lett. 119, 204502.CrossRefGoogle ScholarPubMed
Garcia-Briones, M.A., Brodkey, R.S. & Chalmers, J.J. 1994 Computer simulations of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage. Chem. Engng Sci. 49 (14), 23012320.CrossRefGoogle Scholar
Ghabache, E. 2015 Out of equilibrium free surface: from cavity collapse to stretched jets. PhD thesis, Université Pierre et Marie – Paris VI.Google Scholar
Ghabache, E., Antkowiak, A., Josserand, C. & Séon, T. 2014 On the physics of fizziness: How bubble bursting controls droplets ejection. Phys. Fluids 26, 121701.CrossRefGoogle Scholar
Ghabache, E. & Séon, T. 2016 Size of the top jet drop produced by bubble bursting. Phys. Rev. Fluids 1, 051901.CrossRefGoogle Scholar
Gordillo, J.M. & Rodríguez-Rodríguez, J. 2019 Capillary waves control the ejection of bubble bursting jets. J. Fluid Mech. 867, 556571.CrossRefGoogle Scholar
Harlow, F.H. & Welch, J.E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.CrossRefGoogle Scholar
Jin, F., Gupta, N.R. & Stebe, K.J. 2006 The detachment of a viscous drop in a viscous solution in the presence of a soluble surfactant. Phys. Fluids 18 (2), 022103.CrossRefGoogle Scholar
Jin, F. & Stebe, K.J. 2007 The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium. Phys. Fluids 19 (11), 112103.CrossRefGoogle Scholar
Kamat, P.M., Wagoner, B.W., Thete, S.S. & Basaran, O.A. 2018 Role of Marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3, 043602.CrossRefGoogle Scholar
Kovalchuk, N.M., Jenkinson, H., Miller, R. & Simmons, M.J.H. 2018 Effect of soluble surfactants on pinch-off of moderately viscous drops and satellite size. J. Colloid Interface Sci. 516, 182191.CrossRefGoogle ScholarPubMed
Kovalchuk, N.M., Nowak, E. & Simmons, M.J.H. 2016 Effect of soluble surfactants on the kinetics of thinning of liquid bridges during drops formation and on size of satellite droplets. Langmuir 32 (20), 50695077.CrossRefGoogle ScholarPubMed
Lai, C.-Y., Eggers, J. & Deike, L. 2018 Bubble bursting: universal cavity and jet profiles. Phys. Rev. Lett. 121, 144501.CrossRefGoogle ScholarPubMed
Lewis, E.R. & Schwartz, S.E. 2004 Sea salt aerosol production: mechanisms, methods, measurements and models–a critical review. Am. Geophys. Union Geophys. Monograph Ser. 152, 3719.Google Scholar
Lhuissier, H. & Villermaux, E. 2012 Bursting bubble aerosols. J. Fluid Mech. 696, 544.CrossRefGoogle Scholar
Liao, Y.C., Subramani, H.J., Franses, E.I. & Basaran, O.A. 2004 Effects of soluble surfactants on the deformation and breakup of stretching liquid bridges. Langmuir 20 (23), 99269930.CrossRefGoogle ScholarPubMed
MacIntyre, F. 1972 Flow patterns in breaking bubbles. J. Geophys. Res. 77 (27), 52115228.CrossRefGoogle Scholar
McGough, P.T. & Basaran, O.A. 2006 Repeated formation of fluid threads in breakup of a surfactant-covered jet. Phys. Rev. Lett. 96, 054502.CrossRefGoogle ScholarPubMed
Peskin, C.S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (3), 220252.CrossRefGoogle Scholar
Poulain, S. & Bourouiba, L. 2018 Biosurfactants change the thinning of contaminated bubbles at bacteria-laden water interfaces. Phys. Rev. Lett. 121, 204502.CrossRefGoogle ScholarPubMed
Séon, T. & Liger-Belair, G. 2017 Effervescence in champagne and sparkling wines: from bubble bursting to droplet evaporation. Eur. Phys. J. Spec. Top. 226, 117156.CrossRefGoogle Scholar
Shin, S., Chergui, J. & Juric, D. 2017 A solver for massively parallel direct numerical simulation of three-dimensional multiphase flows. J. Mech. Sci. Technol. 31, 17391751.CrossRefGoogle Scholar
Shin, S., Chergui, J., Juric, D., Kahouadji, L., Matar, O.K. & Craster, R.V. 2018 A hybrid interface tracking – level set technique for multiphase flow with soluble surfactant. J. Comput. Phys. 359, 409435.CrossRefGoogle Scholar
Shin, S. & Juric, D. 2002 Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J. Comput. Phys. 180, 427470.CrossRefGoogle Scholar
Shin, S. & Juric, D. 2009 A hybrid interface method for three-dimensional multiphase flows based on front tracking and level set techniques. Intl J. Numer. Meth. Fluids 60, 753778.CrossRefGoogle Scholar
Shu, C. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83 (1), 3278.CrossRefGoogle Scholar
Singh, D. & Das, A.K. 2019 Numerical investigation of the collapse of a static bubble at the free surface in the presence of neighbors. Phys. Rev. Fluids 4, 023602.CrossRefGoogle Scholar
Tedesco, R. & Blanchard, D. 1979 Dynamics of small bubble motion and bursting in freshwater. J. Rech. Atmos. 13, 215226.Google Scholar
Toba, Y. 1959 Drop production by bursting of air bubbles on the sea surface (II) theoretical study on the shape of floating bubbles. J. Oceanogr. Soc. Japan 15 (3), 121130.CrossRefGoogle Scholar
Veron, F. 2015 Ocean spray. Annu. Rev. Fluid Mech. 47, 507538.CrossRefGoogle Scholar
Woodcock, A.H., Kientzler, C.F., Arons, A.B. & Blanchard, D.C. 1953 Giant condensation nuclei from bursting bubbles. Nature 172, 11441145.CrossRefGoogle Scholar
Zeff, B.W., Kleber, B., Fineberg, J. & Lathrop, D.P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403, 401404.CrossRefGoogle ScholarPubMed
Zenit, R. & Rodríguez-Rodríguez, J. 2018 The fluid mechanics of bubbly drinks. Phys. Today 71 (11), 44.CrossRefGoogle Scholar